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DEFINITION  

 

In this dissertation the following terms with corresponding definitions are used: 

Audio – binary information which stores sound data. In the context of this 

work recorded human speech. 

Automatic speech recognition – ability of computing machines to extract 

speech data from audio files and to transfer it into text format. 

Dataset – set of collected data which could be used for further analysis. In the 

context of this work, audio files and their transcription in the text format. 

Neural networks – system of neurons which can be organic or artificial. 
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ABBREVIATIONS 

 
AI  – Artificial Intelligence 

ANN  – Artificial Neural Network 

ASR – automatic speech recognition 

BLSTM  – Bidirectional Long-Short Term Memory 

CNN – Convolutional Neural Networks 

CTC  – Connectionist Temporal Classification 

DLUNN – deep locally unified neural network 

GMM – Gaussian Mixture Models 

GPU  – Graphical Processing Units 

GRU  – Gated Recurrent Units 

HMM – Hidden Markov Models 

HMM/DNN  – HMM/Deep Neural Networks 

LM – Language Model 

LSTM  – Long-Short Term Memory 

MLP – Multi-Layer Perceptron 

MSPC  – Multi-Scale Parallel Convolution 

NLP – Natural Language Processing 

TPU – Tensor Processing Units 
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INTRODUCTION 

 
Relevance of the research topic. Automatic Speech Recognition (ASR) 

systems are nowadays widely used in different areas of human life, in order to make 

it easy for people to interact with computer systems and different applications. For 

example, smart assistants, smart home systems, commercial and subtitling 

applications allow to control computer systems without touching, from a distance. 

Moreover, ASR can make it easy to impaired persons to use electronic devices. For 

example, Ahmad et al.  study the ways of building ASR systems for people with 

dysarthria. Dysarthria is the type of muscle defects responsible for articulation. ASR 

development for people with this problem helps them interact not only with digital 

systems but also with other persons. Next useful example of involving ASR systems 

is the assessment of hearing loss . This type of system can forecast the level of 

hearing injury by the quality of answers to questions. But these opportunities are 

available only for people who knows widely used languages, like English, Chinese 

and Russian. ASR development for low-resource languages still needs enormous 

efforts, like data collection and preparation, testing of well-known recognition 

architectures, as well as studying the ways of adjusting state-of-the art architectures 

for exact languages or the group of languages. The Turkic group of agglutinative 

languages, to which the Kazakh language belong to, has many low-resource 

languages. Besides the problem of shortage of data to train, agglutinative languages 

have other problems stated out below. 

Development of ASR systems for agglutinative languages are complex 

processes due to the their morphological complexity and richness of grammatical 

forms in these languages. According to this, development and fine-tuning ASR 

systems for agglutinative languages require additional studies and specific 

approaches. Below is a list of several challenges ASR systems for agglutinative 

languages can face: 

1. Morphems’ analysis and separation. Morphemes in agglutinative languages 

can be joined and can be complex, which makes difficult the process of splitting and 

analysis of morphemes in speech recognition. 

2. Grammatical ambiguity. Agglutinative languages can have a variety of 

grammatical forms which can lead to ambiguity. For example, one expression can 

have different meanings due to a context. This makes it difficult to exactly recognize 

and interpret a grammatical unit.  

3. Variety of word-formation rules: in agglutinative languages usually there 

exist various rules of word formation which determine how to concatenate affixes 

with the root of a word. This also requires complex models and rules for processing 

those rules in ASR systems.  

There is an enormous number of studies dedicated to the development of 

specific approaches and models to get reliable ASR systems for agglutinative 

languages. Authors of  propose a language model, based on morphemes, where 

morphemes are understood as any of prefix, root or suffix in a word. As a result, 

authors got an automatic speech recognition system with large vocabulary.  studies 



9 
 

the performance of transformer-based CTC system which depends on context, trained 

with the word pieces taken as training units. Authors note the effectiveness of their 

method not only for English and German, but also for one of agglutinative languages 

- Turkish language.  made research on applying transformer architecture for a 

morphological disambiguator using Turkish language. This disambiguator can be 

used in any of NLP tasks and speech recognition is not exception here. The 

transformer architecture performed well also for another agglutinative language - 

Hindi . Here the transformer architecture along with Connectionist Temporal 

Classification (CTC), Language Model (LM) showed the lowest error rate for Hindi 

language: 3.2%. One more example of using Transformer architecture in ASR 

development for agglutinative language is . Here the author compares the 

performance of Transformer-XL architecture with LSTM and concluded that 

perplexity improvement achieved 29% and Word Error Rate (WER) was decreased to 

3% for Finnish language. In  authors state out that there are the most widely used and 

effective end-to-end architectures for automatic speech recognition: connectionist 

temporal classification and attention-based mechanism. Also, in this work mentioned 

the lack of transcribed audio-text pair resources for agglutinative languages to train in 

order to develop reliable automatic speech recognition systems.  

According to the mentioned researches for agglutinative languages it was noted 

that dictionary enlarging and transformer architecture are the most effective 

approaches for developing end-to-end automatic speech recognition systems for 

agglutinative languages. Moreover, the lack of data to train and common 

morphological rules and similar soundings of languages from Turkic family of 

agglutinative languages served as a basis for providing pooling experiments, like 

transfer learning and multilingual training for these languages.  

Purpose of the dissertation. The present dissertation was developed with the 

aim of studying the ways of improving ASR performance for agglutinative languages 

on the example languages from Turkic family.   

Research objectives.  

1. Analysis of existing ASR approaches for general cases and for agglutinative 

languages. 

2. Extension and development of data corpus for agglutinative languages.  

3. Development of models and methods for automatic speech recognition of 

agglutinative languages. 

4. System development for automatic recognition of speech in agglutinative 

languages. 

Object of the study. Modern automatic speech recognition methods and 

approaches, especially pooling metods like multilingual training and transfer 

learning.  

Subject of the study. Agglutinative languages of Turkic family, methods of 

Machine learning, namely neural networks for Automatic Speech Recognition: 

attention mechanism, convolutional neural networks, performance improvement 

methods for critically low-resource languages, a moment from Natural Language 
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Processing methods: word embeddings, and demonstrative Telebot which uses 

trained ASR model and web-application, available to translate audio files to a text. 

Research methods. Machine learning methods, automatic speech recognition 

methods and technologies, natural language processing methods, mathematical 

statistics and probability theory.  

Scientific novelty of the research. The thesis proposes scientific and practical 

novelties, which were applied to practical tasks, especially for improving end-to-end 

automatic speech recognition systems for agglutinative language - focusing Kazakh 

language and which can easily be applied to other languages. Moreover, contributions 

were made to the increase of training data size for Kazakh language. The main 

positive results, obtained during the research are listed below:  

1. Was developed data corpus for agglutinative languages. 

2. Were developed effective models for recognition of agglutinative languages 

from Turkic family: transfer, multilingual, extended language model. 

3. System for automatic speech recognition for agglutinative languages.  

Theoretical and practical significance of the research. Theoretical 

importance of the research is that, it proposes the possibility of improving ASR 

performance improving only the language model with external “Big Text”, and 

shows the possibility of improving performance for all languages included in 

multilingual training, transfer learning for languages from one family group. The 

possibility of applying all mentioned theoretical statements to train ASR for 

agglutinative languages of Turkic family shows the practical significance of the 

current thesis. Moreover, text processing algorithms can be applied to wide range of 

text processing tasks. Audio-text pair data, collected during research, can be used in 

different speech processing tasks. 

Statements to be defended. Next statements are proposed to the be defended: 

1. Dataset for agglutinative languages was developed. 

2. Methods of improving ASR for agglutinative languages were improved. 

3. ASR system for agglutinative languages was developed. 

Reliability degree and approbation of the results. Researches and their 

results related to the thesis topic were presented and discussed in different 

conferences and seminars and some of them were published. Moreover, the author 

was awarded with certificates as a seminar speaker, for the best presentation 

(Appendix A): 

1. End-to-End Model Based on RNN-T for Kazakh Speech Recognition // 3rd 

International Conference on Computer Communication and the Internet (ICCCI) 

(Tokyo, 2021 – 25-27 June). 

2. Certificate to the seminar speaker on the topic “Improved Speech 

Recognition for Agglutinative languages”, Coimbra Institute of Engineering (ISEC), 

(Coimbra, 2023 – 21 April). 

3. Certificate for the best presentation speech, “Improve Automatic Speech 

Recognition for Kazakh Language using Extended Language Model”, “ACeSYRI 

Young Researchers School” (Almaty, 2023 – 5-10 June). 
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4. Improve Automatic Speech Recognition for Kazakh Language Using 

extended Language Model // 21 st scientific conference, (Riga, 2023 – 20-21 April). 

5. Automatic Speech Recognition Improvement for Kazakh Language with 

Enhanced Language Model // Recent Challenges in Intelligent Information and 

Database systems. ACIIDS 2023. Part of The Communications in Computer and 

Information Science book series. – 2023. - Vol. 1, - P.538-545 (Springer, Cham). 

Personal contribution of the researcher. PhD candidate independently 

performed and solved the tasks of the PhD thesis. The author designed and 

implemented end-to-end models for Kazakh and Agglutinative languages. Made own 

contribution in expanding data corpus for Kazakh language. Designed and performed 

experimental tests and assessments of the models, both existing and improved 

models. 

The connection of the dissertation topic with the plans of research work. 

Research works under the research topic were conducted within the grant projects:  

“Development of an end-to-end automatic speech recognition system for 

agglutinative languages” (2020-2022, governmental registration number: 

0120РК00344) in the Institute of information and computational technologies SC 

MHES RK. 

Main results of the dissertation research. There were four papers published 

under the research topic, one of which is published in a periodical journal with non-

zero impact-factor and indexed by databases Scopus and Web of Science, 3 papers 

published in the journals recommended by the Control Committee in the sphere of 

education and science of MHES RK: 

1. Identifying the influence of transfer learning method in developing an end-

to-end automatic speech recognition system with a low data level // Eastern-European 

Journal of Enterprise Technologies. – 2022. - Vol. 1, №115. - P. 84-92 (Scopus, 

percentile 34); 

2. Integrated Automatic Speech Recognition System for Agglutinative 

Languages // News of the National academy of sciences of the republic of 

Kazakhstan. - 2023. - Vol. 1, №345. - P. 37-49.  

3. Transfer learning for an integrated low-data automatic speech recognition 

system // Scientific and technical journal "Bulletin of the Almaty University of Power 

Engineering and Telecommunications". – 2023. - Vol. 1, №60. - P. 185-198.  

4. End-to-end speech recognition systems for agglutinative languages // 

Scientific Journal of Astana IT University. - 2023. - Vol. 13. - P. 86-92.  

5. Author’s certificate "Software Product UniCodeKaz" №38545 from 

21.08.2023 (Appendix B).  

6. Author’s certificate "System of transcribing audio files to text" №38833 

from 31.08.2023(Appendix B).  

Structure and size of the thesis. Dissertation thesis consists of the 

Introduction, 4 sections, conclusion, bibliography from 163 references, and 5 

appendixes. Work is presented in 107 pages and contains 38 figures, 16 tables and 68 

equations.  
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1 STATE OF THE ART 
 

This chapter presents a comprehensive review of related work, both in 

agglutinative and non-agglutinative languages.  

 

1.1 Methodology 

For this section, publications about automatic speech recognition were 

searched in four topics: first ASR examples, worldwide examples, examples for 

agglutinative languages and, finally, for Kazakh languages. The keywords used were 

names of first significant speech recognition systems, names of main methods and 

architectures for Automatic Speech Recognition (ASR), like Hidden Markov Models 

(HMM), Recurrent Neural Networks (RNN), attention mechanism, ASR for 

agglutinative languages and Kazakh languages. It was decided to search for related 

documents from scientific databases like Scopus, Google Scholar and Semantic 

Scholar as it is possible to find the results of appropriate scientific researches from 

these resources. Search with keywords in Scopus database gave 24127 documents, 

while Google scholar retrieved 2320000 results and Semantic Scholar gave a list of 

documents with 226000 entries. Due to the fact that the taken lists of documents were 

very huge, it was decided to narrow down the search process by formulating more 

detailed keywords: “Multilingual speech recognition”, “Conformer for Agglutinative 

languages”, “Attention mechanism in speech recognition”, “Speech recognition for 

Kazakh language”, “Hidden Markov Models in speech recognition”, “Recurrent 

Neural Networks for speech recognition” and so on. The most appropriate and Open 

Access documents were chosen from the retrieved list of documents. Detailed results 

for the basic search keywords are given in Table 1. 

 

Table 1 – Number of results retrieved from databases for different search keywords 
 

Keywords 
Databases 

Scopus Google Scholar Semantic Scholar 

Multilingual speech recognition 1560 195000 110000 

Conformer for Agglutinative languages 1 510 11800 

Attention mechanism in speech recognition 1435 2470000 937 

Speech recognition for Kazakh language 43 21000 43 

Hidden Markov Models in speech recognition 7360 319000 18600 

Recurrent Neural Networks for speech 

recognition 
2918 2 20500 

 

1.2 First ASR examples 

The first speech recognition system was called “Audrey.” It was developed in 

Bell laboratory in 1952 and focused not on words, instead it converted speech signals 

to numbers . In other words, it could recognize numbers from zero to nine spoken by 

an exact person. Further, there was IBM’s “Shoebox” product introduced in 1962. It 

was able to understand 16 words of English language, which consisted of digits and 

names of simple arithmetic operations, like “plus”, “minus”, “total,” and could print 
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results of basic arithmetic calculations . Shoebox received commands via microphone 

and the microphone converted speech into impulses of the electricity. Then a 

measuring scheme classified perceived impulses according to properties of word 

sounds and it activated an adding machine. 

Significant progress was reached in the system “Harpy,” developed by 

Carnegie Mellon University in 1976. This system was based on phoneme recognition 

and could understand more than 1000 words. The segmenter based on the feature 

extraction was used to provide initial inputs of symbols. Then segmentation followed 

by labeling, where the middle points of each segment were compared by templates 

saved earlier and adjusted.  

Application of Hidden Markov Models [13, 14] based on statistical predictions, 

brings a breakthrough in the 1980’s to speech recognition, although researchers 

studied this algorithm in the field of speech recognition since 1958. Ability of speech 

recognition applications grew to several thousand words, because HMM allows to 

predict the most probable sequence of sounds in a speech. 

 

1.3 Introduction of neural models 

Next epoch in speech recognition had started with the introduction of 

Recurrent Neural Networks (RNN), which brought the concept of “deep learning”. 

They are capable of working with sequential and time-based data and can learn 

features and long-term dependencies. They are also able to map sequences of inputs 

to output sequences at the current time-slot and predict the following timestamp’s 

sequence.  The first significant advances in RNNs were reached in 2006, with solving 

the issue of optimization: authors of introduced the idea of using fast and greedy 

algorithms to initialize a slower procedure of learning, which fine-tunes the weights. 

Next study  showed the advantage of gradient clipping, improved momentum 

techniques and obtained improvements in provided experiments on music and text 

data. Development of various types of RNNs like Multi-Layer Perceptron (MLP), 

bidirectional RNN, Convolutional Neural Networks (CNNs), Long-Short Term 

Memory (LSTM), Bidirectional Long-Short Term Memory (BLSTM), and Gated 

Recurrent Units (GRU) allowed to build different architectures which receive input 

data at one end and give output data at another end, which is called End-To-End 

(E2E) architectures.  

E2E brought to speech recognition a simplicity. If traditional ASR systems 

included many supervised stages, like separate training of acoustic, pronunciation and 

language models, E2E maps entered acoustic sequences into a sequence of letters, 

words, because it can play the role of these three models inside a single Neural 

Network (NN).  

Figure 1 [19, p. 052068-2] and Figure 2 [19, p. 052068-2] show the difference 

between conventional systems and E2E speech recognition systems.  
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Figure 1 – Example of conventional ASR 

 

 
 

Figure 2 – Example of E2E ASR 

 

1.4 Modern models for ASR 

Currently, RNN-Transducers (RNNT), Connectionist Temporal Classification 

(CTC) and attention-based encoder-decoder are the widely used E2E approaches [20, 

p. 1436] in speech recognition. Attention mechanism was adopted to speech 

recognition from sequence processing and its introduction  started the new area in 

Natural Language Processing. This also touched the speech recognition as a part of 

NLP. There is an impressive number of research projects which were done about the 

application of attention mechanism to speech recognition, such as models with 

attention mechanism had outperformed its predecessors like RNN and CNN . For 

example, in  authors propose a new type of architecture based on attention 

mechanism, calling it “Squeezeformer”. This architecture is a modification of so-

called conformer architecture, which is mainly based on attention mechanism . 

One of the best speech recognition results among end-to-end architectures was 

obtained by convolution-augmented transformer, which is very popular as Conformer 

[24, p. 5039]. This architecture takes advantages of both approaches included to its 

development: transformer and CNN architecture. Because the transformer can 

manage long-term dependencies, while CNN can capture local relations in a 

sequence. Trained on the LibriSpeech corpus model, it achieved a Word Error Rate 

(WER) of 4.3%, without language model, and a WER of 3.9% with language model. 

All mentioned E2E architectures work properly only with large amounts of 

data to train. But annotating of speech data with its text equivalent is not easy and not 

a cheap process, especially for the tasks of processing the dialects of proper 

languages or for the speech recognition of specific tasks. Merging different corpora 

of several languages, providing transfer learning among relevant languages, can give 

promising results [26-28]. 

 

1.5 Agglutinative language examples 
There was also research for agglutinative languages from Turkic family, by the 

representatives of their speakers and Chinese scientists. Researches of some scientists 

are dedicated to the collection of datasets in order to make them open-source: one of 
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Uzbek language was developed open-source, with transcribed audio data which 

totally consists of 105 hours . The quality of the data was tested by using these data to 

train ASR with DNN-HMM and different end-to-end architectures, like LSTM RNN, 

Transformer and Conformer. The best result was obtained with E2E-Conformer 

architecture, WER on test set was 17.4%. 

In spite of the lack of data to train, some authors attempted to implement ASR 

for real applications. In  was implemented an ASR using an Azerbaijani speech 

dataset for emergency call centers. Here authors used 27 hours of dialogue dataset 

and 53 hours of summary dataset and trained a model on Kaldi. Kaldi is open-source 

toolkit for speech processing tasks proposed in 2011 . The results of GMM/HMM 

and DNN/HMM were compared. Authors realized that use of spelling correction in 

datasets before training and application of DNN/HMM for acoustic modeling and 

using trigram in language modeling are effective in the recognition of emergency 

conversations. One more example of using speech recognition for exact task for 

Azebaijani language is provided in . Here authors test CMUSphinx and Kaldi speech 

recognition tools on 4 hours of specific data for taxi call applications and realized that 

Kaldi gives more accurate results over CMUSphinx. 

In  authors propose the way of improving hybrid CTC-Attention architecture 

by improving feature extraction where they use different sizes of convolutional 

kernels. It gives advantage in fusing features of different scales. Moreover, authors 

improved attention mechanism by using previous attention weight in the calculation 

of attention weights. Authors used BERT model to initialize language model in 

decoding. Training the proposed model on Turkish (35 h) and Uzbek (78 h) datasets 

from Mozilla’s Common Voice dataset reduced WER by 7.07% and 7.08%, 

respectively.  

 

1.6 Kazakh Language examples 

Kazakh language is also an agglutinative language from Turkic family. 

Currently, among all researches for Kazakh language, the best result was obtained in . 

Transformer architecture in joint use with CTC loss function was trained on the 400 

hours speech data. In the results, CER was 6.2% and WER -13.5%. The involvement 

of language model to joint decoding increased the model size, but reduces CER and 

WER by 3.7 and 8.3%, respectively.  also studies the joint use of CTC objective 

function and attention mechanism. Here authors highlight the rapidness of training 

and decoding process with the application of mentioned approach.  

Authors of  proposed Conformer model for Kazakh language boosted by low-

rank approximation for multi-headed self-attention and balanced softmax-function 

which uses penalty algorithm for the words with high frequency. Here low-rank 

approximation helped to decrease model size to 20.2 MB by reducing the number of 

parameters by 5.3 M in comparison with baseline Conformer-CTC architecture. But 

this algorithm is not stable, because the approximation by decreasing the rank size 

also affects recognition quality: word error rate goes up, keeping rank size high does 

not give expected result: number of parameters stays as in baseline model. For 

example, in the case of training with baseline Conformer-CTC, the number of 
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parameters is 47.6 and WER is 10.36. Adding low-rank to baseline model with rank 

size equal to 128 keeps all training results as in the base case. Further decrease for 

different values of rank size gradually decreases the number of parameters, but 

increases error rate for word recognition in parallel.  

Transfer learning is also applicable for Kazakh language. In  was tested 

transfer learning for Kazakh language over the weights of a model for Russian 

Language, regarding to the similarity of alphabets and similar sounding of all 

intersecting letters.  Here authors trained 20 hours of Kazakh language dataset on the 

model trained on 100 hours of Russian dataset. In the end result, authors got letter 

error rate decreased to 32%. It is observed that transfer learning for Kazakh language 

with other language from one language family can help improve recognition for all 

languages. Transfer learning on the example of Kazakh and Azerbaijani languages 

reduced phoneme error rate to 14.23%. 
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2 THEORETICAL FOUNDATIONS 

 

This chapter reviews the most important concepts about agglutinative 

languages, natural language processing, automatic speech recognition, performance 

metrics and speech recognition models.  

 

2.1 Agglutinative languages (definition and necessity of capturing long 

term dependencies) 
Agglutinative languages are languages in which morphological relations 

among words are presented by adding suffixes to the root word. In the result, one 

word can have several morphological morphemes, which give different grammatical 

meanings. But during adding suffixes the meaning of root word does not change. 

Next languages are examples of agglutinative and agglutinative like languages: 

languages from Turkic family [41-45], Finnish, German, Korean languages.  

In the range of this thesis Kazakh language will be studied as an example of 

Agglutinative languages. Agglutinative property of Kazakh language is noticeable in 

nouns and verbs [43, p. 108]. Grammatical affixes in Kazakh language are added to 

the root of a word in order to present tense, case and addressee. For example, the 

noun “адам” can be used in different case and counting forms by the adding various 

differences of affixes. Different morphological examples of noun “адам” in Kazakh 

language are given in Table 2. Morphological examples of the verb “оқу” in Kazakh 

language are given in Table 3. 

 

Table 2 – Examples of different morphological form of the word “Адам” 
 

Word in Kazakh language English meaning 

Адам Human 

Адам-ның Of human 

Адам-ға To human 

Адам-ды The human 

Адам-да Human has 

Адам-нан From human 

Адам-мен With human 

Адам-дар People 

Адам-дар-дың Of people 

Адам-дар-ға To people 

Адам-дар-ды The people 

Адам-дар-да People has 

Адам-дар-дан From people 

Адам-дар-мен With people 

Адам-гер-ші-лік Morality 

Адам-сыз Without human 
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Table 3 – Examples of different morphological form of the word “Оқу” 
 

Word in Kazakh language English meaning 

Мен оқи-мын I study 

Сен оқи-сың You study 

Сіз оқи-сыз You study 

Ол оқи-ды He/she studies 

Біз оқи-мыз We study 

Сендер оқи-сың-дар You study 

Сіздер оқи-сыз-дар You study 

Мен оқы-ған-да When I study 

 

2.2 NLP 

Natural Language Processing (NLP) - is the sector of Artificial Intelligence 

(AI) which studies, develops and applies approaches and models for human-computer 

interaction using natural human speech. NLP includes wide range of tasks starting 

from tokenization, recognition and generation. Tokenization includes splitting, 

syntactic and semantic analyses of a text [50, 51]. Recognition contains tasks of 

determining some types of entries into a text, answers to questions and text 

classification [52-54]. Text generation is the process of generating sequence of 

symbols and words for the tasks of machine translation, dialogue systems and etc. 

[55-58]. It is very important to know relations of words to some classes in the tasks of 

recognition and generation. One of the basic techniques in this area is word 

embedding.  

 

2.2.1 Word Embedding 

Featurized representation of word is the probability of the words' relations to 

different features and these features stored in vector space. Features are learned from 

contextual information and extracted during the training process by calculating 

relations among words in sentences and phrases. These representations could be used 

in sequence generation processes like NLP and speech recognition processes to 

predict the next element of a sentence.  

For example, there is a sentence in a dataset: 

I like the process of picking apples. 

If the trained model have to predict the next word in new sentence which is not 

from a known dataset: 

I like the process of picking ___________? 

What word it will choose from the given example table? Most likely, that it 

will choose the word “cherry”. Because its hot representation is very similar to the 

hot representation of “apple”. But if your model would not know anything about the 

word “cherry” it could not predict it correctly. That is why is it very important for 

your model to know more and more words. Example of featurized representations of 

words is given in Table 4. 
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Table 4 – Example of words’ featurized representation vector 
 

Words 

Features 

Ер 

(man) 

Әйел 

(woman) 

Әке 

(father) 

Ана 

(mother) 

Алма 

(apple) 
Шие (cherry) 

Gender -1 1 -0.97 0.96 0.00 0.02 

Parenthood -0.25 0.32 -0.99 0.99 -0.03 0.04 

Food 0.00 0.00 0.02 0.03 0.92 0.93 

Age 0.43 0.38 0.72 0.78 0.04 -0.08 

Size 0.05 0.04 0.08 0.09 0.25 0.12 

Pet 0.07 0.08 0.01 -0.02 0.00 -0.03 

Fruit 0.00 0.00 0.03 -0.01 0.98 0.94 

 

2.2.2 Automatic Speech Recognition 

Speech recognition is the complex task which includes the tasks from speech 

processing area and Natural Language Processing, and its purpose is the transferring 

human speech into text format. It is based on algorithms, models and approaches 

which process acoustic speech information and build models of languages to 

correctly interpret words and phrases in a human speech [49, p. 5].  

If divide ASR tasks to exact stages, automatic speech recognition task systems 

have three main tasks (Figure 3): feature extraction, training and recognition. At the 

first stage a feature vector is obtained from original speech signal - compressed 

presentation of speech signals, which contains only the information necessary to 

recognize.  

 

 
 

Figure 3 – General scheme for ASR 

 

Human speech in computer systems is presented as audio recordings. Audio 

recording is a long list of numbers measuring the little changes in air pressure 

detected by the microphone. The same way our ears perceive the sound and our brain 

can extract necessary information. In order to make possible to computer to calculate 

the probability of letter or word correspondence to sound piece it is necessary to form 

amplitudes of audio record. It is the complicated process where speech signals 

presented in the form of amplitudes.  There are used two types of methods [60, 

c. 116], first type works with frequencies (Mel-cepstral coefficients, coefficients of 

linear prediction) and second type is time domain (for example, short-term energy 

value). But the problem of feature representation of not totally solved problem, that is 
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why further processing of input speech signals to features is one of the main interests 

of researches [61-63], because the main purpose is to make neural networks able to 

extract features from raw input [64-66] and map features to appropriate output of 

sequences in order to totally exclude human supervision during ASR training process. 

Sequence of feature vectors with length equal to   is called acoustic or 

observed sequence : 

 

                                                              (1) 

 

Using these features human sends words’ sequence, which is equal to : 

 

                                                            (2) 

 

 

The main task of speech recognition is to find the sequence of words  , which 

corresponds to acoustic sequence   [67, 68]. A model   will be built in order to 

solve this task. This model   should be able to generate all possible sequences of  , 

for all word sequences      . Let function          to return all possible   only 

for given  . Then the recognition is the task of finding the word sequence  , which 

can generate the closest acoustic sequence according to the model   ( 3 ): 

 

                                                                (3) 

 

where         - is the distance between    and  . It means that it is necessary to 

check all sequences of words  .  

According to , the main task of an ASR is to map sequence of speech features 

to a sequence of notations, like characters or words. If we denote the sequence of 

speech features as ( 4 ): 

 

                                                       (4) 

 

where T is the length of sequence of speech features and    is a vector of speech 

features at the frame of time t, it has dimension D. Here sequence of words can be 

given as ( 5 ): 

 

                                                       (5) 

 

where   is a word in the vocabulary   which is located at  -th position. 

Mathematical presentation of ASR can be given as follows based on the theory of 

Bayes decision ( 6 ): 

 

                                                       (6) 

 

where   belongs to all possible sequence of words,    is the most probable word.  
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During training of ASR, after finding the most probable word sequence to the 

audio from test set performance of ASR is tested by comparing recognized text with 

original text. There are several main characteristics in speech recognition, which are 

used to assess the ASR model performance. They are accuracy, WER, CER, loss 

function value and training time.  

ASR systems can be used in wide range of applications, including voice-

controlled devices (smart homes, collaborative robots, artificial reality devices), 

smart voice-assistants, laboratory assistants with the support of interaction via voice, 

answering machines, dictation systems, transcribing of audio and video records, ASR 

systems for impaired persons and etc. There are descriptions of some applications of 

ASR systems: 

1. Voice assistants like Siri from Apple, Alexa from Amazon, Google 

Assistant, Cortana from Microsoft use automatic speech recognition and speech 

synthesis. These systems allow user to interact with devices using voice-commands.  

2. ASR systems also helps get text transcriptions of audio and video files, 

which is very helpful in big data processing, transcriptions of lecture, medical 

records. 

3. Automatic answering machines are used to automatically recognize and 

process voice requests from clients.  

4. Technologies for impaired persons and persons with hearing loss can be 

used to make them easy to understand speech and interact with devices and computer 

applications.  

5. Auto translators can help automatically translate a speech from one language 

to other language without human to interpret. 

 

2.3 Performance metrics 
A summary of the results of predictions in the tasks of classification are stored 

in an error matrix, so called confusion matrix, for being used for statistical 

calculation. Correct and incorrect results of different observations  are classified as 

TP (True Positive), FN (False Negative), TN (True Negative), and FP (False 

Positive). A TP is when the model predicts positive and the sample is actually 

positive. A FP is when the model predicts negative and the appropriate sample is 

positive. A TN is when the model predicts positive and the given sample is negative. 

A FN is when the model predicts negative and sample is also negative.  

Example of confusion matrix is given in Figure 4. 
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Figure 4 – Example of Confusion Matrix 

 

Further will be given definition and mathematical formulations for 

performance metrics, which are widely used and specific to the research topic, like 

accuracy, precision, recall, word error rate, character error rate, sentence error rate 

and training time.  

 

2.3.1 Accuracy 

By general definition, accuracy is the sum of correct predictions over the total 

number of examples ( 7 ): 

 

          
                         

              
                                  (7) 

 

Accuracy calculation for speech recognition usually includes the comparison of 

recognized text using ASR with original text [49, p. 10]. Accuracy is determined 

based on the correctly recognized words or phonemes. A common method for 

calculating accuracy includes several steps:  

1. Storing original text. Use dataset of audio files with correct transcription 

texts.  

2. Generation of audio file transcripts, using ASR system. Align original 

transcript with recognized transcript to determine matching words and phonemes. 

Usually, this process is performed by dynamic temporal alignment or alignment of 

sequences.  

3. Calculation of accuracy. Compare aligned original text with recognized text 

to calculate accuracy metric. The most common metric is Word Error Rate - the 

metric which determines the percentage of not correct or replaced words in 

recognized words in comparison with original text. There are other metric types, 

which could be calculated depending on the type of recognition rate analysis.   
 

2.3.2 Precision and Recall 

Precision ( 8 ) and Recall ( 9 ) are also calculated on the basis of data taken 

from the confusion matrix [71, р. 1-16]:  
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                             (8) 

 

        
            

                          
                              (9) 

 

Precision is therefore a ratio that shows how much of the positive predictions 

are correct, while Recall is a ratio that shows how many of the positives are correctly 

determined by the model. 

 

2.3.3 Word Error Rate (WER) 

WER ( 10 ) is the ratio of errors in a recognized text to the total text in the 

initial utterance. It is assessed in percentages and it is one of the key metrics of model 

performance for ASRs.  

 

    
     

  
                                                  (10) 

 

where S is substituted misspellings, I is insertions of words absent in the initial 

transcript, D is deleted (missed) words, WN is the number of words in the initial text. 

In alternative, WER can be calculated using accuracy ( 11 ): 

 

                                                (11) 

 

2.3.4 Character Error Rate (CER) 

CER is the ratio ( 12) of errors in a recognized text to the total number of 

characters in the initial utterance. It is calculated based on the Levenshtein distance 

concept, measured in percentage. It is one of the key metrics of model performance 

for ASR:  

 

    
     

  
                                             (12) 

 

where S is substituted character misspellings, I is insertions of characters absent in 

the initial transcript, D is deleted (missed) characters, CN is the number of characters 

in the original text. 

 

2.3.5 Entropy and perplexity 

Entropy measures information amount for a random variable. By definition: 

entropy, so called self-information is the average uncertainty value ( 13 ) of a random 

variable [49, p. 32]: 

 

                                                       (13) 

 

here      is the probability mass function of some random variable X, in terms of 

language modelling over the alphabet.  It means entropy can be used to evaluate the 
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performance of a language model  as good as perplexity. Perplexity is calculated on 

the basis of cross entropy in order to perform calculation results in a non-logarithmic 

way [49, p. 35]. The less the value of perplexity, the better the performance of a 

language model. The relationship between perplexity and entropy is shown here (14): 

 

                                                      (14) 

 

There are different types of entropies, like joint entropy, conditional entropy, 

Kullback-Leibler divergence, and maximum and minimum entropy that can be 

applied to different tasks. For example, authors of [74, p. 242] give the following way 

of entropy calculation: if given corpus to test is             and language model 

denoted ad     , the mathematical formulation of them will be as follows ( 15 ): 

 

       
 

    

   
   

 

            
    

 
   

   
     

 

                

    
   

 
   

   
     (15) 

 

where d is the length of the test document,           
 
    denotes the test corpus 

length,    means the word in a sequence into the test document. Anyway, the main 

purpose of language modeling is to predict the word sequences which are more 

natural.  
 

2.3.6 Training time 

Training time is the time spent for full training of a model. In general training 

time can vary from several hours, to weeks or even months, depending on several 

factors. Some of the factors are as follows: 

1. Size and complexity of the system. 

Large and complex neural networks with big size of layers and many 

parameters need more time to train, in comparison to simple networks. Training of 

deep CNNs, like ResNet or Inception, can require days or weeks on the most 

powerful Graphical Processing Units (GPU) or specialized hardware systems, like 

Tensor Processing Units (TPU).   

2. Size and quality of the data to be trained.  

Bigger size of data needs more time to train. If you have a dataset which needs 

preprocessing and augmentation, it can require long time to process and increase the 

time for training. 

3. Computing resources.  

Use of the most powerful resources, such as GPUs or specialized hardware 

platforms, can significantly increase the training time. Parallelization of computing in 

different units also can shorten the time of training. 

4. Choice of optimization algorithms. 

Many optimization algorithms do exist, like stochastic gradient descent (SGD), 

Adam, RMSProp and others. Choice of appropriate algorithms and their correct 

tuning can have impact on training time. 

5. Purpose of training.  



25 
 

Training time also can depend on the exact task which is to solve. Some tasks 

like image classification, usually require less time in comparison with the tasks of 

Natural Language Processing (NLP) or text generation.  

 

2.4 Speech recognition models 
 

2.4.1 Mathematical model 

The process of automatic translating a speech to text can be represented as a 

search of the most probable word ( 16 ) sequences according to two estimates: 

acoustic and linguistic:  

 

                                              (16) 

 

where        is the probability of hypothesis occurrence by acoustic model,      
is the probability of hypothesis   by language model.  

 

2.4.2 Acoustic models 

For acoustic modeling of speech Hidden Markov Models (HMMs), are usually 

used. Here each allophone (speech sound) is represented by one continuous HMM of 

the first order. The phoneme model most often has three states: the first describes the 

beginning of the phoneme, the second represents the central part, and the third the 

ending. The HMM of a word is obtained by connecting phoneme models from the 

corresponding phonemic alphabet into a chain. In a similar way, word models are 

connected to each other, forming phrase patterns. HMM states are described by 

means of mixtures 

Gaussian probability density distributions (Gaussian mixture model - GMM), 

which provide a fairly complete coverage of possible variants of pronunciation of 

phonemes, taking into account phonetic contexts and speaker differences. The goal of 

training acoustic models based on the HMM is to determine, from the training 

sequence of observations, such model parameters with which the probability of this 

sequence would be maximum. Context-independent phonemes or context-dependent 

phonemic implementations can be used as acoustic units in speech recognition 

systems. The advantage of using context-dependent units is their ability to model the 

effects of coarticulation between adjacent sounds. Therefore, in modern speech 

recognition systems, context-independent models (monophones), which correspond 

to phonological units of a phonemic set, are often replaced by context-dependent 

models (triphones). HMM is the most widely used method for modeling acoustic 

units, but HMM is not without drawbacks. In particular, they have weak 

discriminative abilities, that is, the ability to separate classes of words.  

The most common language models are statistical models based on n-grams of 

words, which estimate the probability of the occurrence of a sequence of words in 

some text. n-grams are a sequences of n elements (for example, words), and the n-

gram language model is used to predict an element in a sequence containing n-1 

predecessors . The disadvantage of n-gram models is that they predict a word based 

on a pre-existing context of a certain length. Usually a context of three words 
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(trigrams) is taken, less often - of four or five words. The use of a longer context is 

problematic, since, firstly, it requires a very large amount of training data, and 

secondly, it significantly increases the size of the language model and, as a result, the 

speed of speech recognition falls down. 

Use of artificial neural networks in speech recognition systems allowed to 

increase recognition accuracy in comparison with basic models (HMM for acoustic 

modelling, n-grams for language modelling). Basic types of neural networks used in 

speech recognition are given in Figure 5. 

Neural networks can be used for both acoustic and language modeling, 

improving recognition accuracy. NNs can be divided into feed-forward networks and 

backward networks. There exist different varieties of NNs, among which the main 

types can be distinguished: perceptrons, autoencoders, convolutional neural network 

(CNN), NN with time delays (time delay neural network; TDNN), deep belief 

networks (deep belief networks; DBN), NN with long short-term memory (Long 

Short-Term Memory; LSTM), Bi-LSTM(Bidirectional LSTM). 

In some studies , it was shown that the use of NNs together with HMMs allows 

to improve the accuracy of speech recognition, while HMMs provide the ability to 

model long-term dependencies, and NNs provide the possibility of discriminant 

learning [7]. 

 

 
 

Figure 5 – Classifications of NNs in speech recognition 
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Acoustic models are usually built on the basis of deep neural networks 

(DNNs), which are forward-propagation ANNs containing more than one hidden 

layer between the input and output layers. There are exist many methods for 

combining neural networks and HMM. Two main methods among existing methods 

are: 1) building hybrid HMM/DNN models; 2) construction of tandem models. In 

hybrid systems, neural networks are used to obtain HMM posterior probabilities.  

In the tandem method, the output of the neural network is used as an additional 

feature stream for HMM training.  

To increase the accuracy of recognition, the bottleneck method was also used. 

In a bottleneck neural network, the middle layer has fewer elements. The input data 

for the neural network are features such as mel-frequency cepstral coefficients 

(MFCC) or perceptual linear prediction (PLP) coefficients. After training, the layers 

behind the bottleneck layer are removed. The output of neurons in the bottleneck 

layer serves as acoustic features for standard speech recognition systems using 

HMM. 

Studies on combining ANN and HMM for acoustic modeling were started in 

the late 1980s . However, such studies were not popular at that time, due to the fact 

that NN is a resource-intensive task and requires high-performance computers. In 

recent years, due to the increase in the computing power of computers, the use of 

ANNs in speech recognition systems, including for acoustic modeling, is becoming 

increasingly popular. The development of a parallel computing platform using the 

NVidia CUDA graphics processor made it possible to significantly reduce the 

training time of deep ANNs on large data volumes, which contributed to an even 

greater spread of neural network models in speech recognition systems . 

Last studies in the area of acoustic dedicated to the ways of excluding 

processing raw features by HMM.  For example, in , the possibility of obtaining 

features directly from a neural network without converting output probabilities to 

features suitable for HMM was studied. Experiments were carried out using a five-

layer bottleneck perceptron in the middle layer. After training the network, the output 

from the bottleneck layer was used as features for the speech recognition system. At 

the same time, an increase in recognition accuracy was obtained when these features 

were used instead of probabilistic features; in addition, the size of the model was 

reduced, since only part of the neural network was used. 

Parameters are one of important factors with neural networks. The paper  

describes a study of which parameters of neural networks are most important for the 

operation of a speech recognition system. It has been shown that with the increase in 

the size and depth of the model, the efficiency grows only up to certain limits. In 

addition, a comparison was made of standard deep neural networks, convolutional 

neural networks, and deep locally unified neural networks(DLUNNs), which showed 

that DLUNNs can significantly improve recognition accuracy. 

In , neural network for acoustic models were trained using Kaldi and Python 

deep learning toolkit (PDNN) software. Acoustic models were trained as follows: 

first, acoustic models using Gaussian Mixture Models(GMMs) were created using 

Kaldi, then a deep neural network was trained using PDNN, and finally the trained 
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neural network models were loaded into Kaldi for speech recognition. The article 

describes four implementations:  hybrid model; a tandem model using features 

obtained from the bottleneck layer; joint use of previously mentioned two methods a 

hybrid model based on a convolutional neural network. 

A convolutional neural network consists of one or more pairs of convolutional 

and pooling layers. The architecture of a convolutional neural network is shown in 

Picture 2.4. In a convolutional neural network, the activation signal of each neuron is 

calculated by multiplying a small part of the input data(several vectors of features 

from Figure 6) by the weight matrix W. Then the weight matrix is shifted for the next 

part of the input data, thus the weight matrix is shifted over the entire input feature 

space. At the output of the layer, a feature map is formed. The pooling layer performs 

downsizing of the input feature map by selecting the maximum element. The merging 

layer allows you to reduce the influence of speaker variance on the model parameters. 

A convolutional neural network for acoustic modeling was used in , where neural 

network adaptation to the context of convolutional neural networks was studied, 

which made it possible to reduce the relative recognition error by 6%. 

 

 
 

Figure 6 – CNN architecture 

 

Neural networks with time delays are also used for acoustic modeling.  They 

are a multilayer neural network of direct propagation, the nodes of which are 

modified by introducing time delays . An example of a node with N delays is shown 

in Figure 7. In the figure,      are the inputs of nodes; each of the J inputs is 

multiplied by the corresponding factor of weighting  ;      are time delays and F 

is an activation function . Here short-term memory is built into the artificial neural 

network. The introduction of a time delay makes it possible to make the ANN 

invariant to time shifts. In , the use of neural network with time delays made it 

possible to obtain a relative decrease in the error rate for word recognition by 2.6%. 
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Figure 7 – Example of neural network with time delays 

 

Another type of neural networks are recurrent neural networks. The presence of 

feedback provides the neural network with memory, which makes it possible to 

simulate dynamic processes. One of the types of RNNs used for acoustic modeling is 

the LSTM network containing special elements called memory blocks. Memory 

blocks contain cells that store the temporary state of the network, as well as 

multiplicative elements called gates (gates), which control the flow of information. 

Each block of memory contains an input gate, an output gate, and a forget gate. An 

example of an LSTM network memory block is shown in Figure 8. In the figure,    is 

the input vector at time t,    is the output vector. An LSTM network cell can be 

considered as a complex network element capable of storing information for a long 

time. Gates determine when the input is relevant and needs to be remembered, when 

the information should continue to be remembered or forgotten, and when the 

information should be output. It was shown in [91, p. 631-634] that the use of LSTM 

in a hybrid RNN/HMM model makes it possible to reduce the word recognition error 

compared to the use of DNNs. 
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Figure 8 – Example of LSTM unit 

 

Recently, end-to-end speech-to-text systems using only neural networks are 

popular. They do not train HMM models. End-to-end systems consist of two 

submodules: an encoder and a decoder. The encoder reads the input signal, calculates 

the features of the signal and converts it into an intermediate parametric 

representation. The decoder converts the parametric representation of the signal into a 

sequence of symbols. In , an end-to-end system was built on the basis of a 

convolutional neural network and the neural network temporal classification method 

(CTC) . The developed approach was tested for the problem of phoneme recognition, 

and the phoneme recognition error was 18.2%. The network with LSTM units was 

used to build the end-to-end system described in . Without the use of linguistic 

information, the word recognition error was 27.3%, the use of a dictionary made it 

possible to reduce the error to 21.9%, with the trigram model of the language, the 

word recognition error decreased to 8.2%. 

Despite of breakthrough achievements in E2E STT systems, some of actual 

ASR systems use architectures similar to old constructions and consequently use 

methods derived from them: discriminative training methods, HMM, GMM and 

HMM/DNN. This approach needs a hand-made phoneme dictionary built on 

developers’ suggestions which is then used to build context dependent phonetic 

model. During the building of phonetic model text tokenized not into words, text 

splitted to phoneme groups . According to this, given detailed descriptions of these 
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methods concurrently with modern STT architectures and approaches are given 

below.  

 

2.4.2.1 HMM 

Hidden Markov Models are static models, which are used for modelling 

sequential data. They are widely used in the tasks where data has temporal or 

sequential structure, like speech recognition, NLP, bioinformatics and other 

applications. HMM consists of two main components: hidden sequence of states and 

observable sequence of characters. Inside of HMM exists the set of states which form 

the hidden sequence. Each state can generate certain characters, forming observable 

sequences. Transfer probabilities of between states and probabilities of character 

generation are determined by model parameters.  

The main assumptions of HMM: 

1. Markov Assumption: a current state depends only on previous state. It 

means that current state depends on the state that exactly prior to it and does not 

depends on other previous states.  

2. Assumption about observability: Observed variable (character) depends 

only on the current state, and does not depends on other states or other characters.  

The main tasks related to HMM are probability definition of observed 

sequence, decoding of state sequences, model training.  The main task of probability 

definition of the observed sequence  is the calculation of character sequence under the 

given model of HMM. The main task of state sequences decoding is the finding of 

the most probable sequence of hidden states which is appropriate to the given 

sequence of characters. The main task of model training is the assessment of 

parameters on the basis of selected data from observed sequences. HMM training is 

usually performed by using Baum-Welch algorithm which is the variation of 

expectation-maximization (EM) algorithm. Additionally, forward-backward 

algorithms and Viterbi algorithm are widely used for decoding. 

Application of HMM in speech recognition 

HMM is defined as set of triple parameters : 

 

                                                                (3) 

where A is the matrix of transition probabilities, B is the probability matrix of output 

observations, and   is the probability vector of initial states. Matrix A consists of 

elements    , where these elements are probabilities of transitions from state   to state 

 . Matrix B contains elements       , where        is the observation probability of 

feature vectors in the state  . Finally,   consists of components, called    - 

probabilities of being in the state   at the beginning time. 

Statistical models of phonemes, words and whole phrases are created with the 

help of HMM. The choice of a specific language object depends on the tasks to be 

solved by the speech recognition system being developed. Usually, it is possible to 

distinguish the following approaches to the construction of the HMM (they can be 

both mutually exclusive and complementary) [97, p. 275]:  
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1. HMM is used to model phonemes - sound letters of the language, which 

can be combined into words.  

2. Phonemes are modeled using three states - initial, middle and final (Figure 

9). This is due to the fact that speech trajectory cannot change its characteristics 

instantly, and while moving from a phoneme to another phoneme it goes “through” 

intermediate states.  

3. Phonemes can sound in different ways depending on other sounds around. 

This process is called coarticulation Two types of phoneme models exist depending 

on whether this phenomenon will be ignored or not: monophones and triphones. 

4. A separate HMM is composed for each word from the dictionary and the 

most appropriate is chosen during recognition. This approach is very good for 

recognition of distinct words.  

5. One HMM can be composed by joining HMMs for through internal 

states(for example, silence), according to the language grammar. It is necessary for 

the recognition of continuous speech.  

 

 
 

Figure 9 – HMM fragment for "n” and “a” phonemes which include tree states: 

initial, middle and final 

 

Use of HMM for the recognition of isolated words is based on the calculation 

of probabilities with forward propagation, which is defined as the probability of 

observed sequence                 , which is in the state   at the time moment   
for the model            ( 18 ): 

 

                 

                    
  
                                        (18) 

 

Calculation of       goes recursively. Achieving the end of observed sequence, 

exactly to    , it is necessary to sum up       for all states, after taking the 

probability of observing sequence                  for the given HMM   ( 19 

): 
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                                    (19) 

 

This probability can be used to recognize isolated words: each word is modeled 

by HMM   . At recognition it is important to choose the HMM which available to 

generate observed   with the highest probability ( 20 ): 

 

                                            (20) 

 

The method described for calculating        is called the algorithm of 

forward pass and it is also the base for reassessment procedures of HMM (Baum-

Velshch algorithm). Another famous algorithm is the algorithm of Viterbi, which is 

used to find the optimal sequence of HMM states                 , which 

corresponds to the given sequence of observations. These algorithms also works 

recursively, but instead of increasing sum at each step, movement goes by maximum.  

 

2.4.2.2 Gaussian Mixture Model – GMM 

There are two main approaches to determining the probabilities of 

observations: mixtures of Gaussian probability density distributions (Gaussian 

Mixture Model; GMM) and artificial neural networks. 

Until about 2010, the Gaussian mixture model was used in practice to specify 

the distribution of the observed signal depending on the phoneme. To do this, the 

audio signal is divided into small sections (10-50 ms), to apply traditional signal 

processing in the frequency domain, a fast Fourier transform is performed for each 

section of the signal. Further, the logarithm of the resulting spectrum was used in 

connection with the well-known logarithmic perception of the sound scale by the 

human ear. Finally, using the discrete cosine transform of the logarithm of the 

spectrum, practically independent features were obtained – cepstral coefficients, the 

distribution of which was written as a mixture of Gaussian random vectors with 

diagonal covariance matrices. 

In a system using mixtures of Gaussian distributions probability densities, the 

probabilities of observations are defined as ( 21 ): 

 

                              
 
                        (21) 

 

where   is the number of components in mixture,     is the weight of Gaussian 

distribution              ,     and      are elements of mathematical expectations 

vector and covariance matrix.  

 

2.4.3 Hidden Markov Models and Artificial Neural Networks - HMM/ANN 

In the hybrid HMM/ANN model, the probabilities of observations are 

calculated using a neural network. The neural network calculates the probabilities 

depending on the class           . It means, we can calculate the probabilities of 

observations using Bayes' theorem ( 22 ): 



34 
 

            
          

     
 

          

       
                             (22) 

 

Various neural network architectures, like Multilayer Perceptron, Recurrent 

Neural Networks, Long-Short Term Memory, Gated Recurrent Units and 

Convolutional Neural Networks are used to build hybrid models [101, c. 81]. The 

architecture of the hybrid model is shown in Figure 10. 

 

 
 

Figure 10 – Hybrid HMM/DNN model architecture 

 

2.4.4 End-to-end models 

It has been shown in many works that the use of neural networks at each step 

of the scenario of a standard speech recognition system improves the quality of its 

work. So, for example, in  language models were trained using RNN, in  a dictionary 

was obtained using LSTM networks, in  deep neural networks showed good results 

for building acoustic models, in  a method was presented feature extraction using 

limited Boltzmann machines . Consequently, the idea arose to use artificial neural 

networks at all stages of speech recognition. 

In the case of speech recognition, the integral approach tries to calculate 

       "globally". Let the input be a sequence of sound features X, and the 

corresponding sequence of words is W. Thus, the neural network calculates the 

probabilities P                            where the probability arguments are not 
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the sequences of words themselves, some of their representations (hereinafter referred 

to as labels).  

Figure 11 [101, c. 83] shows a general diagram of the integrated system. At the 

moment, there is a huge amount of architectures and neural network types for 

implementing integral models. Further will be given detailed and short descriptions 

of working principle of the most popular approaches for speech recognition.  

 

 
 

Figure 11 – General scheme for E2E ASR system 

 

2.4.5 Sequence models 

Sequence models belong to the class of supervised learning and consist of 

artificial neurons, which have feedback loops and can be used to solve various 

problems such as speech recognition, speech synthesis, music generation, different 

type of classification tasks, machine translation, and video activity recognition. But 

the limitation of these models is only input or the output can be a sequence. In other 

words, sequence models can be used to solve any type of supervised learning 

problem that contains time series in either the input or output layers. 

Traditional neural networks assume that all inputs (and outputs) are 

independent of each other and therefore will not work in sequence prediction because 

previous inputs are inherently important in predicting the next output. For example, 

when predicting the next word in a text sequence, we need to know at least several 

words before the word to be predicted. Traditional neural networks require that the 

lengths of input and output sequences be constant across all predictions. Sequence 

model networks can solve this problem directly. 

 

 
 

Figure 12 – Types of sequence models 

 

Sequence modeling has many types of networks: including one-to-one, one-to-

many, many-to-one, and many-to-many, as shown in Figure 12. When generating 
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music, the input can be an empty set, and the output can be a song (one-to-many), 

while in speech recognition, only one word can be obtained from a long set of sound 

characteristics(many-to-one). Many-to-many architecture where the length of the 

input and output sequences are different can be implemented using the encoder and 

decoder approach. Many-to-many models are known as "sequence-to-sequence" 

models.  

The most popular and widely used algorithms for sequential models are: RNN, 

LSTM, GRU. 

 

2.4.6 RNN 

The whole point of processing a connected sequence of data is to be able to 

take into account the connection of elements in addition to extracting a response for 

each element. For example, it is possible to represent an image as a set of vectors, 

each containing the pixels of one column. If we want to teach the network to classify 

natural language sentences (for example, determine the emotional coloring of a 

sentence), and feed one word after another to the network, we want the network to 

“remember” the words already transmitted. If we want the network to translate a 

sentence from one language to another, then it would also be good to take into 

account the beginning of the sentence when translating the middle and end. 

It is the task of “remembering” the elements of the sequence that have already 

been looked at and is supposed to be solved using a recurrent network. To do this, in 

addition to the output vector, the network must also have some vector that describes 

the current internal state of the network, i.e. it contains memories of all the elements 

already viewed by the network. More formally, it looks like this. 

Consider, we have set of input vectors                   and they will 

sequentially transformed ( 23 ): 

 

                                

                                                     (23) 

 

Moreover, in addition to the output      (which we may not need at each step), 

we also have a vector      describing the current state. Thus, the network consists of 

cells of the form as shown in Figure 13. 
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Figure 13 – RNN cell 

 

These cells are assembled into a sequence, passing the internal state from the 

cell to the one following it in time. Note that the weights in this case for all cells are 

the same (Figure 14). 

 

 
 

Figure 14 – Sequence of RNN cells 

 

2.4.7 LSTM 

The problem with basic RNN cells is that they cannot "keep in memory" very 

long sequences. This is due to the fact that when we pass gradients through a 

sufficiently long sequence, we encounter one of two problems: either the gradients 

decrease so much that errors at the end of the sequence no longer affect its beginning, 

or the gradients increase, and the process diverges. The same problem exists in 

conventional networks: by adding layers, appear difficulties with training (hence 

architectures of ResNet and other approaches). To overcome this problem, it was 
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proposed to replace conventional RNN cells with a more advanced version: the 

LSTM. In the basic version of LSTM, was added one more internal state of the cell    

which helped to extinguish the problem of vanishing or exploding gradients. Also, an 

input and an output gate were added to the LSTM cell. This approach proposed the 

solution that input data will have effect on internal state and internal state will affect 

the output. Its working principle is given in Figure 15.  

 
 

Figure 15 – LSTM cell structure 

 

If we present the working principle of LSTM formally, it looks like as follows 

( 24 ): 

 

                                

                                                           (24) 

                                

                       

                   

 

Here      and      are the input and output gates, respectively, and   denotes 

the operation of elementwise multiplication. Those Here      and     are assumed to 

be vectors of 1-s and 0-s that allow to pass or do not pass some components of the 

vector through themselves. 

The concept of the gate was so effective that later they were added another one: 

forget gate (Figure 16). This gate allowed additional zeroing of some components of 

the internal state        before passing them on. 
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Figure 16 – LSTM with forget gate 

 

Formally it looks this way ( 25 ): 

 

                                

                                

                                                              (25) 

                                

                            

                   

 

Here      is a forget gate.  

 

2.4.8 GRU 

Gated Recurrent Unit (GRU) is a modified, simplified version of LSTM, in 

which long-term and short-term memory are combined into a so-called Hidden State. 

It only has a latent state that can combine both long-term and short-term memory. 

The GRU was introduced in 2014 to solve a common vanishing gradient problem 

faced by programmers. 

Vanishing gradient problems occur when the gradient tends to decrease after 

backpropagation over time and ceases to be of benefit in the learning process. 

Therefore, in registered neural networks, if the first levels gain the least amount of 

gradient, their learning process stops. Since these layers are not trained, the RNN 
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does not remember anything from the experience of longer runs of data and runs into 

short-term memory problems. 

GRUs are a variation of the RNN design. They use the gating process to 

manage and control the flow of information between the cells of a neural network. 

GRUs can make it easier to catch dependencies without ignoring past information 

from massive chunks of serial data. GRU does all this using its gates, which help 

solve vanishing gradient problems often encountered in traditional registered neural 

networks. These gates help control the information that should be kept or discarded at 

each step. It is also worth remembering that controlled recurrent blocks use reset and 

update gates. GRU structure is given in Figure 17. 

 
 

Figure 17 – GRU structure 

 

GRUs have an update gate function. The main function of an update gate is to 

determine the ideal amount of previous information that is important for the future. 

One of the main reasons why this feature is so important is that the model can 

replicate every detail of the past to eliminate the vanishing gradient problem. 

GRUs also have a reset gate function. The main reason why reset gates are 

vital is because they determine how much information should be ignored. It would be 

fair to compare the reset gate to the forget gate in LSTM as it tends to classify 

unrelated data and then force the model to ignore it and act without it. 

Formally it looks this way ( 26 ): 

 

                                

                                

                                                               (26) 
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Here      is the output of update gate,      is output of reset gate,       is a 

candidate state,      is a hidden state,   the operation of elementwise multiplication.  

 

2.5 Attention mechanism and Connectionist temporal classification 
There are two major architectures for ASR: Connectionist-Temporal 

Classification (CTC) and attention-based methods, both of them based on RNN. In 

CTC, the acoustic model emits not only output characters, but also emits blank 

neutral symbols which serve as connectors for the final output sequence of symbols. 

Neutral symbols allow the network to implicitly align longer acoustic features to 

output sequences of characters which is very short in length [96, p. 287].  

CTC is a widely used deep learning algorithm of ASR systems. CTC was 

proposed by Alex Graves in 2006 [93, р. 1-8] and is widely used in modern ASR 

systems because it is able to handle variable-length sequences of input. CTC operates 

on the output of a neural network. The main purpose of CTC is to map the output 

E2E network to a sequence of characters which is the text of the spoken words. CTC 

considers all possible versions of alignments between the output of an E2E network 

and the target output sequence and computes the probability for alignment. The 

output of the CTC algorithm is the alignment with the highest probability. 

Advantages of CTC over traditional ASR algorithms are as follows: CTC does not 

require explicit segmentation of the input signals, that is why this algorithm is more 

robust to different variations in the speed of speaking and pronunciation.  

Attention-based methods use the attention-based neurons to explicitly align 

acoustic frames to output characters. Attention-based methods can model statistical 

dependency between input and output sequences [96, p. 287]. 

 

2.5.1 Connectionist temporal classification 

Neural networks in speech recognition are usually trained using individual 

fragments of audio recordings of speech. To do this, it is necessary to allocate 

separate marks corresponding to each frame, which entails the need to align the audio 

track and transcription. However, alignment is only reliable after training the neural 

network, which leads to a circular relationship between segmentation and recognition 

(known as Sayre's paradox ). Moreover, in speech recognition tasks based only on 

word transcription, alignment is not useful. 

Connectionist Temporal Classification [93, р. 1-8]. is a function that allows 

recurrent neural networks to be trained to recognize a sequence of words without 

initial alignment of input and output sequences. 

To describe how the CTC works, let's start with an approach in which the CTC 

function is used as a loss function to train a neural network. The output layer of the 

neural network contains one block for each character of the output sequence (letters, 

phonemes, punctuation marks) and one more for an additional "blank" character, 

which corresponds to an empty output character. The output vector    is normalized 
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using the softmax  function, which is interpreted as the probability of occurrence of a 

blank character with index   at time   ( 27 ): 

 

          
       

  

   
      

    

                                                      (27) 

 

where   
  is the  -th element,    is the length of a word. Let   be a sequence of 

“blanks” and characters to align. The probability        can be represented as a 

product probabilities of occurrence of symbols at each moment of time ( 28 ): 

 

                  
 
                                          (28) 

 

For a given output sequence |  |, there are as many possible alignments as 

possible ways of placing "blanks" between characters. Let "-" mean "blank". For 

example, the alignments (x,-, y, z, -, -) and ( -, -, x, -, y, z) correspond to the sequence 

(a, b, c). When identical characters appear consecutively, these repetitions are 

removed: (x, y, y, y, z, z) and (x, -, y, -, z, z) correspond to (x, y, z). Let's denote that 

  is an operator that first removes all repetitions, and then removes "blanks". Thus, 

the total probability of the output sequence   is equal to the sum of the probabilities 

of all possible corresponding alignments ( 29 ): 

 

                                                      (29) 

 

where     is the operator reverse to  . 

This sum over all possible alignments allows the neural network to train on 

non-segmented data. It means, without knowing the exact location of the labels, we 

summarize over all the locations where they can be. This sum can be calculated using 

dynamic programming [93, р. 1-8]. Let    be the target sequence of words, then the 

neural network can be trained to minimize the CTC function ( 30 ): 

 

                                                            (30) 

 

A neural network can be trained with any optimization algorithm that uses a 

gradient.  

Figure 18 shows a diagram of the CTC model, where the encoder can be a 

DNN, LSTM, BLSTM, CNN or any other kind of neural networks. In [93, р. 1-8], a 

CTC forward-backward algorithm is proposed, which uses a dynamic programming 

algorithm similar to the forward-backward algorithm for HMM [97, p. 281]. The 

main idea of this algorithm is that the sum over all alignments is split into the sum 

over the alignments corresponding to the prefixes of their output sequences. This sum 

can be efficiently computed using recursive direct and inverse variables. 
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Figure 18 – ASR system with CTC 

 

As for CTC decoding, two options for decoding integral CTC models were 

presented in [93, c. 1-8]. The first method is based on the assumption that the most 

likely alignment matches the most likely output sequence ( 31 ):  

 

                                                         (31) 

 

where                . Calculating the best alignment is a simple task, because 

   is the concatenation of the most "active" outputs at each time step. However, this 

does not guarantee finding the most probable sequence of words. 

The second method (the method of finding prefixes) is based on the fact that by 

modifying the forward-backward algorithm described above, one can efficiently 

calculate the probabilities of successive extensions of output sequence prefixes. 

 

2.5.2 Attention Mechanism 

Encoder-decoder models are often used for problems where the lengths of the 

input and output sequences are variable [55; 116]. The Encoder is a neural network 

that transforms the input               into some intermediate representation 

             . The decoder is usually an RNN that uses this intermediate 

representation to generate output sequences. The encoder can be any neural network, 

for example: DNN, LSTM, BLSTM, CNN. Figure 19 shows a diagram of the model. 
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Figure 19 – Encoder-decoder ASR system 

 

In , it was proposed to use an Attention-based Recurrent Sequence Generator 

(ARSG) as a decoder. It is a recurrent neural network that stochastically generates an 

output sequence         on the base of input  . The ARSG consists of the RNN and 

a subnet called the attention-mechanism. The attention mechanism selects a 

subsequence of the input sequence, which is then used to update the hidden states of 

the RNN and to predict the next output value. In the  -th step, recurrent sequence 

generator generates output   , focusing on certain elements of   ( 32 )-( 34 ): 

 

                                                  (32)  

 

        
   
                                             (33) 

 

                                                      (34) 

 

where      is the i-1-th state of the RNN, which is called Generator,      is attention 

weights (another name is alignment).    sometimes called “glimpse”.  Step is finished 

by recurrently (usually recurrent function if LSTM or GRU) calculating the new state 

for the generator ( 35 ): 

 

                                                                    (35) 

 

Scheme of attention mechanism is given in Figure 20.  
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Figure 20 – Integral model with attention-based mechanism 

 

In [117, p. 579], it was proposed to divide attention mechanisms into three 

types: location-based, content-based and a hybrid. Hybrid is the most general type. If 

Attend does not depend on     , then this is an content-based attention mechanism . 

Attention can be thought of as a normalized sum of the metrics of each h element ( 36 

), ( 37 ): 

 

                                                               (36) 

 

      
          

           
   
   

                                           (37) 

 

The main limitation of such a scheme is that the same or very similar elements 

of h are considered the as the same, regardless of their positions in the sequence, 

which in speech recognition has significant importance. This problem is called "the 

problem of similar fragments of speech". Often this problem is partially solved by an 

encoder, such as Bi-LSTM or deep CNNs, which encrypt the context information into 

h elements. However, the sizes of h and their elements are always limited, which does 

not fully solve this problem. 

For example, the location-based attention mechanism calculates alignment 

using the state of the generator and the previous alignment:                     . 
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This type of attention mechanism predicts the distance between successive phonemes 

or symbols only by     ,  which can be difficult due to the large variance of this 

distance. 

The hybrid attention mechanism uses the previous      alignment to select the 

short subsequence h, according to which the content attention mechanism will select 

the most relevant elements without the problem of similar fragments of speech.  

 

2.5.3 Self-attention 

         is attention-based vector representation of a word. Self-attention 

mechanism means the calculation of this vector for each word in a 

sentence(           ). Here, representation of each word is computed in parallel 

depending on the relations of a word to another word in a sentence (Figure 21). For 

example vector  will be calculated for the word “Дубайға”. Of course, there could 

be used word embedding, but depending on the context the word “Дубайға” can be 

considered as historical place or the destination for holiday. In order to understand 

the context and choose appropriate representation for the considered word, the 

surrounding words would be looked up.  

 

 
 

Figure 21 – Attention calculation for each word related to other words in a sentence 

 

Vector A of the transformer attention is described in ( 38 ). This attention type 

includes softmax in its divisor as well as RNN attention ( 39 ):  

 

          
            

              
                                      (38) 

 

        
           

            
  
  

                                        (39) 

 

Before calculating attention, we firstly associate each word with three vectors:  

               . Here      is query,      is key and      is value. These vectors 

are found using the following matrices:         . These matrices are learned 

parameters of the algorithm and they allow to pull-up query, key and value vectors 

for each word ( 40 ): 

 

              

                                                            (40) 
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where    is word embedding for the word  . After getting:                vector it 

is necessary to take four values marked in white blue figures in Figure 22 in order to 

figure out more relevant representation and compute the softmax  over them. For 

example the value            corresponding to word “жазда” can have the largest 

value. Further taken softmax values will be multiplied with      values. Finally these 

multiplications will be summed up and will give                 . 

 

 
 

Figure 22 – Softmax calculation for inner products of query and key values 

 

2.5.4 Multi-head attention 

It's not easy to get dot product attention to work: bad initialization with random 

values can destabilize the learning process. This is handled by simultaneously 

calculating attention with several attention heads at once and concatenating the 

results, here each head has its own learning weights ( 41 ), ( 42 ): 

 

  
                                

                      (41) 

 

                      
        

        
                           (42) 

 

where          ,      are trainable weights of  -th attention head, and   -is projection 

which helps dimensions   
   ,   

  to match all layers. In essence, multiple "heads" 

allow the attention mechanism to "make multiple bids at once", allowing you to look 

at different transformations or aspects of features from the previous layer. 
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2.5.5 ASR architectures based on attention mechanism 
 

2.5.5.1 Transformer 

Content based global relations in sequences can be captured by transformer 

models [24, p. 5036]. Transformers are mainly based on the attention mechanism 

which is firstly mentioned in . Transformers were originally developed for machine 

translation and have gradually replaced RNNs in mainstream NLP tasks. The 

architecture has a fresh approach to learning representations: completely getting rid 

of recurrence, transformers for each word build features using the attention 

mechanism to determine the importance of all other words in the sentence for this 

word. Thus, the constructed features for a given word are simply the sum of linear 

transformations of the features of all words, weighted by this "importance".The 

described architecture in formal language looks like this way:  so,   is the hidden 

representation of the  -th word in the sentence   - from layer   to layer     is 

updated like this ( 43 ): 

 

  
                  

      
      

   

 

  
                 

                                          (43) 

 

where ( 444 ): 

 

              
   

      
   

(4) 

 

where     is a set of words in a sentence,          trainable linear 

weights(abbreviated from Query, Key, Value). The attention mechanism is computed 

in parallel for each word in a sentence to get their updated features at once. It is the 

advantage of the transformer architecture over RNN which updates features word by 

word. The mechanism of attention is easier to understand from of steps from  

Figure 23: 
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Figure 23 – Attention mechanism in Transformers 

In Figure 23, features for a given word   
  and all other words from a sentence 

  
 ,      will be calculated attention weights     for each pair       as a scalar 

product. Afterwards this will be applied softmax-function through all j. At exit 

updated features   
    for the word   will be taken summing up by all   

  weighted by 

corresponding    . Each word of the sentence concurrently passes the same chain of 

calculations.  

The key problem, due to which the architecture of transformers looks like as it 

is: the values of the features for each word after applying the attention mechanism 

can be very different in magnitude.  First problem may appear due to too "sharp 

peaks" or, on the contrary, uniformity in the attention distribution    . Second 

problem is that when we concatenate the outputs of several heads for each word, and 

they can also be very different in “scale”. Therefore, in the final vector   
    the 

value spread can be large. According to the practices accepted in machine learning, 

here it makes sense to add a normalization layer to the calculation chain. 

Second problem is solved by transformers using LayerNorm, which normalizes 

and learns the affine transformation at the feature level. In addition, dividing the 

attention dot product by the square root of the dimension helps to hold the first 

problem. 

Final trick to deal with the problem of scaling: the values at each position are 

transformed by a two-layer perceptron with a special structure. After applying multi-

head attention, they project   
    into an absurdly high dimensionality using trainable 

weights, afterwards they are transformed with a non-linear ReLU activation function, 

and then values are projected into the original dimension, to further pass an another 

normalization ( 45 ): 

 



50 
 

  
                

                            (45) 

 

here LN means Layer Normalization, MLP stands for Multi-Layer Perceptron. Final 

structure of Transformer architecture is given in Figure 24. These layers made 

"Transformer" architecture deeper, and this allows the NLP community to increase 

both the number of parameters and the size of the datasets. Residual connections 

between the inputs and outputs of each "sublayer" of multi-headed attention and fully 

connected "sublayer" are the key detail that allows you to stack the layers of the 

transformer on top of each other. 

 

 
 

Figure 24 – Transformer with Layer Normalization and Multilayer Perceptron 

 

2.5.5.2 Conformer 

The conformer architecture is effective in many speech processing tasks. It has 

advantages of convolutions and attention mechanisms. Convolution is good for short-

term local dependencies, while self-attention is good for capturing long-term 

dependencies [24, p. 5036; 120]. The reason of these specific abilities can be 

described next way: the transformer using the self-attention mechanism captures the 

global context well, but does not extract local features very well. Convolutional 

neural networks, on the other hand, use local features efficiently, but require a large 

number of layers to capture the global context. A conformer combines convolutional 

layers with a self-attention mechanism.  

First, the data supplied to the input of the Conformer is augmented. The 

SpecAugment method is used for speech recognition. SpecAugment applies three 

types of deformations to the Mel-spectrogram: time distortion (lengthening or 

compression of a certain interval of the record), removal of a certain time interval 
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from the record, and removal of a certain frequency interval. Thus, when training on 

noisy data using SpecAugment, the network is trained on features that are resistant to 

time deformation, partial loss of frequency information, and loss of small segments of 

speech. The conformer processes the final augmented inputs with a convolutional 

neural network consisting of a pooling layer, a fully connected layer, and a dropout, 

and then with a sequence of Conformer blocks. 

Conformer blocks are a sequence of two macaron-like feed forward modules 

[120, p. 17629], between which there is a Multi-Head Self Attention module and a 

convolutional module, followed by normalization layer (Figure 25). 

 

 
 

Figure 25 – Architecture of Conformer encoder 

 

Mathematical description of Figure 25 looks like as follows ( 46 ): 

 

        
 

 
                

  
                                  
  
     

                      
   

                        
   

 

 
              

                   (46) 

 

here    is the input,    is the output of  -th Conformer block.  
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2.5.5.3 Branchformer 

This architecture was proposed in 2022 in the study [120, p. 17629]. Here 

authors state out limitations of Conformer encoder, like combining self-attention and 

convolution sequentially. After looking for questions dedicated to relationships in 

different layers of Conformer encoder, and importance of initial layer operations 

authors proposed Branchformer architecture calling it flexible and customizable. This 

type of encoder architecture has two branches one of which uses self-attention to 

capture long-term dependencies and another one that uses gated Multi-layer 

Perceptron (gMLP) for processing local relations (Figure 26). Two branches run in 

parallel.   

 

Figure 26 – Branchformer architecture 

 

Outputs of two branches are concatenated. This concatenation also can be 

replaced by weighted average in order to make it interpretable where local and global 

relationships of context were used in layers. Concatenation can be performed along 

the dimension of features and the result can be projected to original dimension again 

(47): 

 

                                                  (47) 

 

where        is trainable matrix,            output sequences of attention branch 

and gMLP branch respectively. Despite the  effectiveness of merging by 

concatenation, it is not easy to modify. As a result Branchformer authors proposed 

weighted average method. This approach firstly summarizes the output sequence 

from each branch with attention-based pooling method ( 48 ): 
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                                                              (48) 

 

Further in order to get weights of branches, these vectors are projected to some 

scalars and modified to normal case by softmax function ( 49 ): 

 

                                                         (49) 

 

here            are linear transforms. Finally weighted average captures all of 

local and global connections and looks like this ( 50 ): 

 

       
                                              (50) 

 

To Branchformer can be applied branch dropout, which means the dropping of 

an entire branch for attention mechanism.  
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3 EXPERIMENTS AND RESULTS 

 

3.1 Data collection 
 

3.1.1 Introduction 

Improving automatic speech recognition for low-resource languages is one of 

the most urgent problems of today. The Kazakh language belongs to the group of 

agglutinative Turkic languages with few resources. In general, all the languages 

which belong to the Turkic language family are representatives of the group of 

agglutinative languages, and almost all of them are representatives of languages with 

few resources [8, p. 84]. Due to the lack of information in the form of audio-text pairs 

for these languages, they are called low-resource languages. For example, one of the 

largest publicly available corpora is the Open-Source Uzbek Speech Corpus  of the 

Uzbek language, which is only 105 hours long and has 258 hours of Uzbek language 

data collected as part of Mozilla's Common Voice project. Common Voice is 

Mozilla's project, where collected and made available to the public audio-text 

information of the world's languages. Any volunteer can participate in the 

development of this project. For the Kazakh language, ISAAI has a corpus of 1,200 

hours consisting of 600,000 sentences . Information about most of other Turkic 

languages can be found only in Common Voice. 

There are several research works on speech recognition of the Kazakh 

language. For example, some works have improved speech recognition by using well-

known recurrent neural networks and some by using the architecture with single 

hybrid neural systems [38, p. 263]. If one paper considered the improvement the 

automatic speech recognition for the Kazakh language by conducting transfer 

learning over the model of the Russian language [40, p. 5884], another paper 

developed mutual transfer teaching of the Kazakh and Azerbaijani languages, which 

belong to the group of related languages [8, p. 84]. In another work, the Kazakh 

language was trained together with other Turkic languages. All these works have 

achieved better results than the previous ones. And it can be observed that the more 

information that is taught to everyone, the more accurate the speech recognition will 

be. 

Due to the fact that the tuning the hyperpameters for transfer learning method 

is complicated, and the fact that combined language training basically improves an 

acoustic model, the probability of error in identifying speech in a specific language 

for short contexts is high, the relevance of collecting "Clean" information for specific 

languages has not disappeared. Therefore, within the framework of this research 

work, the work of enlarging the corpus of the Kazakh language was also carried out. 

 

3.1.2 Methodology: raw data collection, combining the collected data into 

single corpus and data normalization  

For the development of reliable automatic speech recognition system, it is very 

important to have a sufficient amount of transcribed data, as in all other areas of 

machine learning. At this stage of the research, it was very important to combine the 

collected data for all periods into one large corpus for further ASR, which could be 



55 
 

used in practical applications. Therefore, it was decided to combine the following 

data sets: 

1. 283 hours of data, previously collected in the laboratory of the Institute of 

Information and Computing Technologies.  

2. Data collected for the 2022 year and marked in the laboratory of the 

Institute of Information and Computing Technologies. This audio data contains phone 

conversations, audio recordings of zoom meetings, news channels: 195 hr 11 min 25 

sec (It was expected that in the end we would have 478 hours of data, but after 

removing duplicates, only 407 hours remained. It is very important to exclude 

duplicates in order to preserve the quality of the resulting ASR model). 

3. Writing a script for collecting data with different encodings into one file 

with UTF-8 encoding(UTF-8, UTF-16, rk1048). 

195 hours of prerecorded phone dialogues and audio files of zoom meetings 

specially collected for researches, were collected and further processed for 

comprehensive improvement of speech recognition in the Kazakh language. During 

the processing of telephone dialogues, audio files were separated from two-channel 

audio into two separate channels using ffmpeg software, and the audio information of 

each channel was recorded in a separate file (Figure 27). Audio files were further cut 

into short audios of 8 seconds duration. These audio files were further used for text 

annotation. 

 

 
 

Figure 27 – Split two-channel audio-recordings into single channels 

 

The script for editing audio files was written in C++. However, these script 

lines can also be used in other programming languages. 

1. Script line for dividing files into channels:  

str += string("ffmpeg -i ") + filename + " -map_channel 0.0.0 " + left + " -

map_channel 0.0.1 " + right +" -report"; 

2. Script line for cutting files into 8 second files:  

lstr="ffmpeg -i "+left+ " -f segment -segment_time 8 

"+trunk_path+ltmp+"%03d.wav"; 

3. Script line for changing the frequency of files:  

str += string("ffmpeg -i ") + filename + " -ar 16000 " + out; 

The most effort and time in data collection was needed to process the data, 

collected in 2022: as the markup was done on different operating systems the human 

factor was unavoidable. The data contained encoding UTF-8, UTF-16, rk1048), and 

this required the development of an algorithm which is able to collect the data into 
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one file using only one script. Python was choosen as the language for writing the 

script, as this language throws an exception by default, in the process of all other 

encodings, except UTF-8. Next, all files that were thrown out to the exception 

processing block, depending on the presence of bytes b’\xef\xbb’, b’\xff\xfe’, 

were decoded into strings with UTF-8, UTF-16 or rk1048 encoding. The encoding 

type selection algorithm depending on the availability of one or another byte is shown 

in Figure 28. The complete program code is given in (APPENDIX C). 

 

 

Figure 28 – Encoding selection for files that were thrown into an exception after 

attempting direct decoding with UTF-8 

 

Next step was dedicated to the normalization of data, collected to one large text 

file: removal of numbers, punctuation marks, extra, special and invisible symbols. As 

the comparison of one symbol to a long speech leads to force alignment all numbers 

were rewritten to text format. Also all letters were converted to lowercase, because of 

the reason that, ASCII code of uppercase and lowercase letters and having different 

cases will have impact on the performance of ASR. The same reason served as a base 

for clearing the text from punctuation marks. 

ASR training tools like Kaldi and ASR throw exceptions for special and 

invisible symbols. In order to make the collected corpus trainable on different tools, 

the symbols, like '\u200c', '\u0x00' and etc. were removed from transcripts. The script 

for removing these symbols is given in Figure 2929. 
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Figure 29 – Script for removing invisible symbols from a text 

 

After combining and processing all the necessary data, the validity of the data 

was checked by training the ASR on ESPNet. ESPNet was selected as a tool for 

obtaining an integrated model. An architecture using a conformer encoder and a 

transformer decoder was chosen. The input audio information is processed by CNNs, 

Bi-LSTM neural system is used to obtain hidden layers in the encoder. The decoder 

improves the attention mechanism by fixing connection class coefficients, and 

additionally calculates the weight of the language model with a coefficient of 0.3 

during decoding. As experiment held only with the purpose to check trainability of 

the data, other parameters of neural network weren’t analyzed.  

The obtained model showed that the quality of the collected data is suitable for 

ML training dedicated to automatic speech recognition. Even if the model parameters 

were not carefully chosen, the accuracy of the model was obtained within reasonable 

values (Table 5). 

 

Table 5 – Performance of test ASR trained on collected audio-text data 
 

Dataset types WER (%) CER (%) 

Train 20.4 8.2 

Test 22.4 9.3 

 

3.1.3 Use of trained ASR model 

The ability of the trained ASR model was presented by a Telegram bot. User 

sends audio messages to the bot and received the answer as a transcribed text form of 

sent audio file. Source code of Telebot is given in (APPENDIX D) and its interface in 

Figure 30. 
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Figure 30 – Interface of Telebot, implemented using trained ASR 

 

3.1.4 Conclusion 

Constructing the model needed to build a speech recognition system, like any 

other type of machine learning, requires an adequate dataset. But processing the 

information collected in the real environment in the form of audio-text and making it 

usable is one of the most complex types of information collection. The 195-hour 
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marked database collected and edited by the authors in more than 1 year is suitable 

material for use in experiments for the purpose of creating speech recognition 

systems in the Kazakh language, and currently for expanding other databases. After 

removing duplicates and merging the collected database with 283 hours of previously 

collected data the total volume of data reached 396 hours.  This is evidenced by the 

results of experiments conducted for the purpose of testing the database. 

 

3.2 Multilingual training experiments 
 

3.2.1 Introduction 

Kazakh language is a low-resource agglutinative language from the Turkic 

family languages which belong to agglutinative languages. Moreover, almost all 

these languages suffer from data shortages [8, p. 84]. Data scarcity for these 

languages is found in the presence of less-transcribed audio. For example, the largest 

open-source corpus, which is an Open-Source Uzbek Speech Corpus, has only 105 

hours. There were 258 recorded hours and 97 validated hours in Uzbek in Common 

Voice. Common Voice is a Mozilla’s project for collecting open-source datasets of 

transcribed audio data for all possible languages in the world.  Anyone can participate 

in improving this resource. ISAAI’s Kazakh language corpus contains 335 hours  of 

transcribed audio (two hours in Common Voice). Some agglutinative languages only 

have corpuses in the Common Voice.   

Inspired by the results presented in some papers [125, 126] we decided to use a 

multilingual model using datasets of several agglutinative languages because 

multilingual models demonstrate stable gains over monolingual models [8, p. 86]. 

Therefore, it is supposed that the multilingual model taken for the group of 

agglutinative languages can decrease Character Error Rate (CER) and Word Error 

Rate (WER) for distinct languages included in the experiments. Moreover, it is 

assumed that the model can be used as a base for providing transfer learning for 

distinct groups of languages.  

Experiments provided on 11 languages from the Roman family give better 

results on Multilingual Deep Neural Networks (DNN) compared to monolinguals . 

Transfer learning conducted using the English language model significantly improved 

the CER for 12 languages (some agglutinative languages) [126, p. 4221]. The reason 

for this hypothesis is that agglutinative languages have common characteristics 

including linguistic structure, agglutinative morphology, and vowel harmony . 

Furthermore, attempts to use a language model of the Russian language to Kazakh 

[40, p. 5884] resulted in unsatisfactory Error Rates because word formations of these 

languages are different [8, p. 86]. 

According to previous research, it was decided to train a multilingual model for 

languages from the Turkic family using the Cyrillic alphabet. The reason for 

choosing such a method is that the similarity of the alphabet can lead to better 

compatibility among language words that have common roots.  

Most of existing combining methods of datasets of different languages does not 

take into account relations of languages to each other. The basic idea of this research 

is to study the impact of combining languages from Turkic language family, with 
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similar scripts. Common word and sentence formation rules of the selected languages 

with similar scripts allow to get a working model for each of languages included in 

the experiments. The contributions of this research are: 

1. ASR development method for critically low-resource languages. 

2. Improving ASR performance for languages from one language family. 

Further subsections present a review of relevant work found in the literature, 

describe the datasets and the methods used in this study, present the main results of 

the study, contain a discussion of the results and a comparison with state-of-the-art 

methods. The last subsection draws conclusions and proposes directions for future 

work. 

 

3.2.2 Related Work 

Pooling resources from different languages is helpful for low-resource 

languages [127, p. 8622; 129-132].The same idea can also be applied to distinct 

language families. Investigations on combining experiments, such as Transfer and 

Multilingual training on agglutinative languages, and improvements in WER and 

CER were mentioned in [8, p. 86; 133]. Applications of ESPNet and its benefits for 

languages of this family can be found in [30; 133, p. 454]. ESPNet is a deep neural 

network-based automatic speech recognition toolkit that was proposed in 2018 . 

ESPNet’s conformer encoder and transformer decoder, which are used for low-

resource languages, obtained an improvement of more than 15% [135, 136]. The 

application of the conformer encoder in the multilingual end-to-end (E2E) model 

yielded better results than the others [131, p. 1-4]. 

Suggestions for further use of multilingual models as a basis for transfer 

learning could be justified by the results of . A multilingual deep neural network 

(DNN) and a matrix factorization algorithm were used to extract high-level features. 

In the second stage, the authors applied a joint CTC-attention mechanism with 

shallow Recurrent Neural Networks (RNNs) for high-level features extracted at 

previous levels. The authors state that the proposed architecture is the best among all 

the existing end-to-end transfer models. The use of a multilingual model in , built on 

a collection of adversarial languages for further providing transfer learning for 

absolutely different languages, shows improvement by decreasing WER up to 10.1%. 

This study uses the IARPA Babel. IARPA Babel is a program aimed at improving 

automatic speech recognition in a large number of different languages 1. Using 

subword units in a CTC-attention-based system on the LibriSpeech 1000h dataset 

obtained an improvement over a character-based hybrid system, reducing the WER to 

12.8% without a language model . Moreover, the authors stated that using subwords 

helps to avoid out-of-vocabulary problems. This can be assessed as a reason for 

choosing languages from one language family because a large part of the words from 

these languages have common roots.  

Another successful example of using end-to-end ASR for agglutinative 

languages can be found in . In this study, experiments were conducted using a 

conformer model and CTC-Attention on data augmentation, noise injection, and 

exponential moving average. For the Corpus of Spontaneous Japanese, the authors 
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achieved a state-of-the-art CER of 3.2%. The paragraphs above summarize 

information about previous works on Turkic languages and the reasonability of the 

models and network chosen for the experiments in this study.  

Experiments in [126, p. 4218] were conducted using Mozilla’s Deep Speech 

v0.3.0 . A total of 26 h of data for Tatar and 10 h of data for Turkish were used to 

train the ASR model for these languages over the English language model. The CER 

for Tatar was 26.42%, whereas that for Turkish was 27.52%.  

A Deep Neural Network with Hidden Markov Model (DNN-HMM) system 

was applied to Turkish, one of the most popular and widely used Turkic languages. 

The dataset consisted of 6.1 hours of data, collected from mobile devices. In 

comparison with GMM-HMM systems, the authors obtained a WER of 

approximately 2.5 in comparison with the GMM-HMM systems.  

The authors of [31, p. 634-1] investigated questions of speech recognition in 

emergency call centers for the Azerbaijan language. In the experiments, two types of 

datasets were used: dialogue dataset (27 h) and summary dataset (57 h). The GMM-

HMM and DNN-HMM were applied to train the acoustic model. The authors found 

that the DNN-HMM showed better results in the experiments, and the trigram 

language model gave no risk of overfitting.  

In [37, p. 8337-1], the authors considered a transformer architecture with self-

attention components that can shorten the training process by parallelizing the 

processes for the recognition of speech in the Kazakh language. Application of the 

Transformer + CTC LM model decreased the CER and WER to 3.7% and 8.3%, 

respectively, for 200 h of read speech.  

The hybrid model used in [63, p. 48720] comprised a CTC with an attention 

mechanism for 400 h of data. The results were as follows: CER = 9.8% and WER = 

15.3%. Including Language Model (LM) in this composition led to a significant 

decrease in the CER and WER (5.8%, 12.2%).  

The end-to-end conformer model in  for the Uzbek language for 105 h of data 

volume gave more effective results over E2E+LSTM and E2E+Transformer for 

Uzbek language from the Turkic family. The end-to-end conformer model showed 

lower error rates (CER=5.8%, WER=17.4%) when the Language Model was 

included in the decoder. 

In [8, p. 84], an attempt was made to fit a model trained on the Kazakh 

language dataset to the Azaerbaijani dataset. In this experiment, the (NMF) algorithm 

was used to extract features from the audio data. NMF is necessary to reduce hidden 

level outputs and decrease redundant values from high-level vectors [137, p. 18-1]. 

Furthermore, these characteristics were trained on the attention mechanism of the 

joint CTC. This approach gave Phoneme Error Rate (PER) equal to 14.23%. 

Authors of [133, p. 448-158] study single E2E Automatic Speech Recognition 

(ASR) using the ESPNet toolkit for the commonly used languages in Kazakhstan: 

Kazakh (KZ), English (EN), and Russian (RU). The combined dataset of the three 

languages has a total volume of 975.6 hours. To solve the issue of grapheme 

compatibility, the authors also combined the grapheme sets of all languages. The 

training results showed an average WER of 20.5%. 
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Table 6 – Summary of different models and approaches applied for agglutinative 

languages 
 

Model Language CER (%) WER (%) Volume of data (hours) 

CTC and attention Kazakh 9.8 15.3 400 

CTC and attention + LM Kazakh 5.8 12.2 400 

Transformer and CTC + 

LM 

Kazakh (Read 

speech) 
3.7 8.3 200 

Transformer and CTC + 

LM 

Kazakh 

(Conversational 

telephone 

speech) 

9.6 15.8 200 

E2E-Conformer Uzbek 7.5 21.2 105 

E2E-Conformer+LM Uzbek 5.8 17.4 105 

Transformer architecture 

Combined data 

of Kazakh, 

English and 

Russian 

languages 

n.a. 20.5 975.6 

Transfer learning over 

English ASR model on 

DeepSpeech (A six-layer 

unidirectional CTC 

model, with one LSTM 

layer) 

Tatar 26.42 n.a. 26 

Transfer learning over 

English ASR model on 

DeepSpeech (A six-layer 

unidirectional CTC 

model, with one LSTM 

layer) 

Turkish 27.55 n.a. 10 

 

Table 6 shows a summary of the comparative results of different models for 

different volumes of data for the Kazakh and all mentioned Turkic languages. The  

Table 6 compares the CER and WER achieved using the different models and dataset 

sizes. 
 

3.2.3 Materials and Methods 
 

3.2.3.1 Datasets 

Almost all Turkic languages have common rules of word formation, and words 

can have the same meaning in these languages. Table 7 shows some examples of 

phrases formed using words with similar soundings and meanings for the Azeri and 

Kazakh languages, which belong to the Turkic language family.  
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Table 7 – Comparative table of expressions with the same meaning in Kazakh, 

Kyrgyz and Azerbaijan languages 
 

Kazakh Kyrgyz Azerbaijani English meaning 

бір алма [biyr alma] 
бир алма 

[bir alma] 
bir alma [bir alma] one apple 

терең көл [tereng kyol] 
терең көл [tereng 

kyol] 
dərin göl [daerin qyol] deep lake 

ақ доп [aaq dop] ак топ [aaq top] ağ top [aack top] white ball 

қара қой [qara qoy] кара кой [kara koy] qara qoyun [qara qoyun] black sheep 

 

To make the experiment reproducible, data from the open-source dataset 

Common Voice was used in the present work. Another reason for choosing this open-

source resource is that the dataset for the Kazakh language is only one hour long. 

This allows us to observe the effect of a multilingual approach on critically low-

resource languages. When the experiments of the current investigation began, 

Mozilla’s Common Voice Corpus 8.0 [126, p. 4219] was the latest available. 

Languages with Cyrillic scripts were chosen from the dataset: Kazakh (1 h), 

Bashkir (265 h), Kyrgyz (44 h), Tatar (29 h), and Saha (6 h). The datasets mentioned 

contain a wide range of speaker ages for both males and females, as shown in  

Table 8 and Table 9. For some languages, there are no samples of older 

speakers, and in the case of Tatar, there are no samples of speakers less than 19 years 

of age. Male speakers were predominant in terms of gender, with the exception of 

Bashkir. 

 

Table 8 – Distribution of the data used – number of speakers, by age 
 

Languages Total hours (validated) 
Ages (%) 

<19 19-29 30-39 40-49 50-59 60-69 

Tatar 29  5 73  1  

Kazakh 1 6 26 3  11  

Sakha 

(Yakut) 
6 11 2 44 7   

Bashkir 265 (255) 4 17 17 6 5 20 

Kyrgyz 6.5 19 67 8 1   

 

Table 9 – Distribution of the data used – number of speakers, by gender 
 

Languages 
Gender 

Male Female 

Tatar 79 2 

Kazakh 42 3 

Sakha (Yakut) 54 10 

Bashkir 30 40 

Kyrgyz 54 36 
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3.2.3.2 Speech Recognition Models 

Our experiments included five agglutinative languages with Cyrillic scripts: 

Bashkir (ba), Kazakh (kk), Kyrgyz (ky), Sakha (sah), and Tatar (tt), with the next 

grapheme set                               . The grapheme set is understood using 

letters of the languages. Examples of grapheme letters in the five languages are listed 

in Table 10. Bold and red letters indicate specific letters for distinct languages. 

 

Table 10 – Graphemes for Turkic languages with Cyrillic alphabet, included in the 

experiments 
 

ba ky sah kk tt All 

1 2 3 4 5 6 

а а а а а а 

ə 

  

ə ə ə 

б б б б б б 

в в в 

 

в в 

г г г г г г 

ғ 

  

ғ 

 

ғ 

  

ҕ 

  

ҕ 

д д д д д д 

е е е е е е 

ё ё 

  

ё ё 

ж ж ж ж ж ж 

    

җ җ 

ҙ 

    

ҙ 

з з з з з з 

и и и и и и 

   

і 
 

і 

й й й й й й 

к к к к к к 

ҡ 

    

ҡ 

   

қ 

 

қ 

л л л л л л 

м м м м м м 

н н н н н н 

 

ӊ 

   

ӊ 

  

ҥ 

  

ҥ 

ң ң 

 

ң ң ң 

о о о о о о 

ө ө ө ө ө ө 

п п п п п п 

р р р р р р 

с с с с с с 

ҫ 

    

ҫ 



65 
 

Table continuation 10 
 

1 2 3 4 5 6 

т т т т т т 

у у у у у у 

ү ү ү ү ү ү 

   

ұ 

 

ұ 

ф ф ф 

 

ф ф 

х х х х х х 

һ 

 

һ 

 

һ һ 

ц ц ц 

 

ц ц 

ч ч ч 

 

ч ч 

ш ш ш ш ш ш 

щ щ щ щ щ щ 

 

ъ 

  

ъ ъ 

 

ы ы ы ы ы 

 

ь ь 

 

ь ь 

 

э э 

 

э э 

 

ю ю ю ю ю 

  

я я я я 

 

The training sets for each language are defined as a pair         for language  . 
Therefore, the datasets are defined as follows ( 51 ): 

 
                                                             (51) 

 

where    is an input given as acoustic features,    is the corresponding output or 

target sequence of characters. The training and grapheme datasets for the multilingual 

language model were combined from the data for distinct languages according to 

[133, p. 451].  

The multilingual dataset is defined as the union of five datasets of languages ( 

52 ): 

 

                                                                    (52) 

 

The multilingual grapheme set is the union of five grapheme sets from different 

languages ( 53 ): 

 

                                                  (53) 

 

For languages with critically low-transcribed data, it is possible to miss some 

letters and sounds in the dataset. The chosen approach of combining the data of 

languages with common scripts and language families can close the gap of absence. 

For example, in Table 10, formed on the basis of letters from datasets, letters ‘в [vae], 
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‘ё [io], and ‘ф’ [fae] are absent for the Kazakh language. However, these letters exist 

in the Kazakh alphabet and are often used in words from other languages. In addition, 

some examples of common letters for all languages included in the experiment 

(Bashkir, Kazakh, Kyrgyz, Saha, and Tatar) and common letters for only some of 

them (e.g., between Tatar and Kazakh) are presented in Figure 31. It is important to 

note that the soundings of these letters are similar in all these languages. This implies 

that the proposed multilingual approach can help improve the ASR model for 

critically low-resource languages. 

 

 
 

Figure 31 – Example of common letters for some of the languages included in the 

experiments 

 

For training all E2E ASR models were used conformer encoder and 

transformer decoders. Connectionist Temporal Classification (CTC) and attention 

mechanisms were used in both stages of training: encoding and decoding. The 

weights of CTC and Attention in the hybrid model were given by the hyperparameter 

ctc weight. This parameter was left in its default value:                    , 

because in , it was proved that this proportion is the best among other values.  The 

weight of the attention mechanism is          according to ( 54 ). 

 

                                                          (54) 

 

where   is the coefficient that controls the weights of the CTC and attention 

mechanism [125, p. 521]. This coefficient is also used in decoding, considering the 

weights of model ( 55 ): 

 

                                                     (55) 



67 
 

 

In ( 55 ),      is a score used in the beam search [125, p. 522]. Probabilities are 

applicable to each output character. 

Figure 32 shows the architecture of the system used for training the 

multilingual model. The procedure for training ASR was the same as for Common 

Voice datasets, except for the feature type: feats type parameter. This parameter was 

set to fbank_pitch because in [127, p. 8620], it was found that features extracted by 

applying filter bank and pitch methods in training CTC gave better results, decreasing 

the CER value. In this study, a deep Convolutional Neural Network (CNN) was 

chosen as an encoder function. Here, the main difference from the initial architecture 

is the method of combining the input features and the output sequence of 

characteristics. 

 
 

 

Figure 32 – Network architecture for multilingual model of Turkic languages with 

Cyrillic alphabet 

 

3.2.4 Results 
 

3.2.4.1 Monolingual ASR Models  

The first monolingual ASR models were trained using the training datasets 
        for each distinct language, where                   }. Speed perturbation 

was applied to languages with critically low-resource data. Only the Bashkir 

language was trained without speed perturbation. The CER and WER results obtained 

for the training and test sets are listed in Table 11. In the initial training, the results 

for the Kyrgyz language showed that the CER and WER were lower in the test set 
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than in the training set. Considering this error, duplicates from the Kyrgyz corpus 

were removed, and only 6,5 hours of data were kept from 44 h. 

Table 11 – Monolingual ASR model results 
 

Languages Details 
Total 

hours 
# Uttr-s 

Validation set Test set 

CER WER CER WER 

Tatar s.p.: 

0.9,1.0,1.1 
29 

train: 20204, 

val: 2812 
4.5 17.0 7.0 22.5 

Kazakh s.p.: 

0.9,1.0,1.1 
1 

train: 406, 

val: 316 
66.3 123.6 67.7 124.2 

Sakha 

(Yakut) 

s.p.: 

0.9,1.0,1.1 
6 

train: 1633, val: 

1083 
29.2 79.7 32.8 85.5 

Bashkir 
no s.p. 

265 

(255) 

train: 178522, 

val: 14577 
1.8 6.4 1.7 6.1 

Kyrgyz s.p.: 

0.9,1.0,1.1 

44(6.5 

kept) 

train: 4010, val: 

502 
17.7 54.3 17.9 55.3 

 

3.2.4.2 Multilingual ASR Models 

The multilingual ASR model was trained on the basis of the multilingual 

dataset             with the following overall utterances: train, 227031; test, 20401. 

Speed perturbation was not applied to the multilingual ASR model. Test folders of 

the distinct languages were used for decoding. Comparing data from Table 1111 and 

Table 1212, especially test/WER and test/CER, it is possible to conclude that 

multilingual ASR gives very promising results for languages with critically low-

resource data: test/WER for Kazakh language decreases from 124.2 to 64.3, test/CER 

decreases from 67.7 to 19.3. 

 

Table 12 – Multilingual ASR model results 
 

Languages 
Validation set Test set 

CER WER CER WER 

ALL: Cyrillic 3.8 11.8   

Tatar n.a. n.a. 5.3 19.7 

Kazakh n.a. n.a. 19.3 64.3 

Sakha (Yakut) n.a. n.a. 18 58 

Bashkir n.a. n.a. 1.7 6.4 

Kyrgyz n.a. n.a. 3.9 11.4 

 

A comparison graph formed based on Table 1111 and Table 1212 for test/WER 

is presented in Figure 33. Here, it is possible to determine that for the language with 

maximum hours, Bashkir’s language results of multilingual and monolingual models 

are nearly the same. Kyrgyz, Saha and Tatar have also made improvements. 
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Figure 33 – Monolingual ASR model WER comparison with multilingual 

 

The results obtained in this study show significant differences in comparison 

with the results of [126, p. 4221]. Transfer learning results for languages from the 

Turkic family over the English language model, especially for the Tatar language, 

showed a higher CER than in our investigation (26.42%). In our experiments, the 

CER was higher in the multilingual model (5.3) than in the monolingual model (4.5) 

for Tatar. However, the use of languages of one family and one type of scripting, 

moreover, according to the advantages of the chosen training system, resulted in one-

fifth less CER than in the result reported in the state of the art. 

The results of [125, p. 524], obtained by training languages from different 

language groups, provided improvements for all languages included in the 

experiment. But there is no dramatic improvement as in the current study: in our 

investigation ASR gives very promising results for languages with critically low-

resource data: test set WER for Kazakh language decreases from 124.2 to 64.3, test 

set CER decreases from 67.7 to 19.3. 

The results of this work prove that multilingual training with CTC + Attention 

mechanisms, including language models, can help obtain meaningful results for 

languages with critically low-level data if we train languages of one family and have 

similar alphabets. 

 

3.2.5 Conclusion 

Almost all languages in the Turkic family are low-resource languages. As these 

languages have words with similar roots and word formation rules, the proposed 

approach can help improve ASR models by providing multilingual training by 

combining datasets to train on the ESPNet system with CTC + Attention mechanism 

+ LM. To maintain robustness, languages with similar letters (Cyrillic) were chosen 

for the study and experiment. The results showed that the ASR system chosen and the 

data combining approach can provide better results than the state-of-the-art system. 

This approach can also help solve the challenge of letter absence in critically low-
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resource languages. The proposed method can be applied to languages of other 

families, but different letters can lead to different results. 

 

3.3 Enhanced LM with enlarged raw text data 
 

3.3.1 Introduction 

The rich set of parameters which describes words’ relationships and can help to 

improve the recognition performance of Automatic Speech Recognition Systems 

(ASR). There is a number of researches where distinct language models trained on 

enlarged dataset of texts were used in order to improve the performances of ASR 

systems [143-146]. One more advantage of this method is the possibility of 

decreasing the cost of ASR, due to the fact that collection of raw text is much cheaper 

in comparison with text-audio data collection.  

The present section is dedicated to the investigation of ASR by using language 

model, trained on enlarged text data. There was proposed the method of applying 

external language model to the workflow of end-to-end ASR, by using it in decoding 

stage. Moreover, the ASR model of big dataset was used as a basic model for transfer 

learning, which also had impact on the performance of ASR.  

Subsections of this part of the thesis describe related works, methodology used  

and provided experiments, discussions and conclusions. 

 

3.3.2 Related works 
 

3.3.2.1 Researches, dedicated to improve ASR for Kazakh Language 

Multi-Scale Parallel Convolution (MSPC) was proposed by some authors [35, 

p. 7319-2] as the method of ASR improvement in the architecture CTC-attention. 

Here authors use this method with bidirectional long short-term memory (Bi-LSTM) 

and achieved the performance improvement for end-to-end model. Authors of this 

research used data for Turkish and Uzbek languages from Common Voice and 

augmented them by adding noises, this allowed them to check the performance and 

increase the size of data, to be trained. The result of this study showed that WER and 

CER were decreased by using proposed approach in joint use with language model. 

Here the increase of beam width to 16 also was one of factors which helped to 

improve results.  

In  authors trained twenty two different languages together in multilingual 

training in order to observe the impact of multilingual approach for representators 

from one language family. Results of this approach showed that this multilingual 

approach decreases error rates for each language. In  was proposed the idea of using 

external LM, trained on the data collected from different books in Kazakh language, 

but authors proposed the idea of only parts of words.  

 

3.3.2.2 Text corpus enhancement for ASR: general case 

The use of improved word embeddings was proposed in [143, p. 96] and 

authors noticed its usability in speech translation and ASR. The importance of word 

embedding vectors in decreasing error rates was studied and proved in [144, p. 8515]. 
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Improved vectors of embedded words can decrease WER being used in decoding 

process, because they can obtain rare words as improvement of these vectors are 

usually provided using large-scale data [145, p. 690]. Authors of [146, p. 366] studied 

approaches of translating written text form of human speech into the format which 

can serve as a basis for building LM which also can improve ASR performance.  

 

3.3.3 Methodology 

Current research studies the impact of distinct language model to the 

improvement of ASR characteristics. An enlarged language model was integrated 

into decoding stage. This language model was trained on the data which consists of 

text data from different resources and the text of paired entire dataset for training the 

ASR. General structure of proposed decoder is depicted in Figure 34. 

 

 
 

Figure 34 – Improved decoder with the LM of enlarged raw text 

 

3.3.3.1 LM enhancing 

As ESPnet supports the state-of-the-art architectures for ASR,  like transformer 

and conformer, it was choosen as a tool for providing the experiments for this task. 

Convolutional Neural Networks (CNNs) were used for processing input signals and 

the method of joint decoding (CTC-attention) was applied for output. A Language 

Model (LM) was trained [134, p. 3; 135, p. 2] and was integrated in decoding ( 56 ): 
 

                                                                        (56) 

 

here p is for the next word’s probability,     is the word’s probability given as 

suggestion found by ASR model,     is the probability of next word calculated by 
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extended language model,  is the coefficient of language model (     , float 

value). 

Use of additional raw text information can improve hot vectors which are 

called E-vectors, because it can obtain different cases of usages of words and their 

combinations.  

 

3.3.3.2 Featurized representation 

The probability of word’s relation to different classes of features is called 

featurized representation. These features can be retrieved extracted by calculating 

relations of words into utterances, sentences or phrases. This type of information is 

very useful in the tasks of generation sequence, for example in NLP and ASR, 

because both of these tasks need the prediction of next token.  

Let’s consider, we have this sentence in our data collection:  

I like to drink milk. 

If the newly trained model is expected to predict the word in a sentence, in the 

expression which is not in the trained dataset:  

I like to drink ___________? 

Which token will be chosen from the table of word representations? It is 

expected, that it will pick up word “juice” due to the fact that hot representation of 

this word is nearly the same as “milk”s (Table 13). It means, if the model will not 

have any information about the “juice”, the probability of predicting it for the 

sentence in near to zero. This is the reason for increasing the “knowledge” of models 

about sentences, expressions and words.  

 

Table 13 – Featurized representations of some words in Kazakh Language 
 

Features of words 
Ана 

(mother) 

Әке 

(father) 
Ұл (boy) 

Қыз 

(girl) 

Сүт   

(milk) 

Шырын 

(juice) 

Parenthood -1 1 -0.27 0.26 0.00 0.02 

School -0.25 0.32 -0.99 0.99 -0.03 0.04 

Drink 0.00 0.00 0.02 0.03 0.92 0.93 

Wet 0.02 0.03 0.04 0.01 0.94 -0.98 

Size 0.05 0.04 0.08 0.09 0.55 0.62 

Fruit  0.07 0.08 0.01 -0.02 0.09 0.53 

Flower 0.15 0.20 0.09 -0.21 0.08 0.34 

 
3.3.3.3 LM architectures 

Enhanced text corpus was trained with the use of two different LM 

architectures: sequential RNN model and Transformer language models. Training of 

“Big text” by transformer resulted in the lowest perplexity value: 2.99. “Big text” 

also gave improvement, when in was trained with sequential RNN in comparison 

with training entire text of the used dataset: 3.99 agaist 9.09. (Table 14). This table 

also depicts, that the biggest number of trainable parameters was extracted with 

transformer LM (50.54 M). 
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Table 14 – Impact of different language models on perplexity  
 

Type of language model Perplexity 
Trainable  

parameters 

Number of  

sentences 

RNN language model (transcript of basic 

dataset) 

9.09 6.83 M 5774 

RNN language model (enhanced text data) 3.99 6.84 M 139810 

Transformer(enhanced text data) 2.99 50.54 M 139810 

 

3.3.3.4 RNN language model 

Architectures of language models, tested during this experiment are based on 

statistical probability. Application of probability to the sequences of letters and words 

was proposed in the 80’s of twentieth century . In this approach the probability of 

whole sentence or expression is calculated as the product of each word’s probability 

which depends on the previous part of expression. 

 

                                                     (57) 

 

In ( 57 ) s stands for sentence,    stands for the i-th word. Sentences in Kazakh 

language can be very long, that is why RNN LM with LSTM cells was used . This 

language model was trained in the architecture with two layers and 650 LSTM units 

in each layer. Linear decoder was used with the number of features 650 for input and 

48 for output. The batch size was set to 48. Model was trained in 20 epochs.  

 

3.3.3.5 Transformer language model 

Transformer is one of the generally used and efficient architectures [136, 

p. 5874]. The key mechanism in this architecture is attention weights, which firstly 

successfully solved the task of text translation . In this research this type of language 

model has embedded type of sequential layers. Dropout for this model is 0.1 and 

activation function is rectified linear unit. Each layer of encoder has eight heads and 

512 units in each head. After  position-wise feed-forward, there was placed two 

normalization layers. Dropout is 0.1. Learning rate was chosen as  0.001 and model 

was trained in 25. 

 

3.3.4 Description of ASR architecture and the results of training with LM on 

“Big text” 

ASR uses conformer as an encoder and transformer as a decoder. The layer 

used as input layer is convolution layer which is two dimensional. Activation 

function for input layers is ReLU. Multi sequential encoder with 12 layers is used. 

Relational positioning attention heads are in each layer. Each layer has four attention 

heads. This layer is is followed by two layers of position-wise feed-forward and 

convolution layers. Activation function of these two different types of layers is 

swish. Normalization layers are used after each layer of encoder.  

Decoder, which uses transformer architecture has positional encoding in the 

embedded layers of input. After these layers there are placed six attention layers with 
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multi heads. Joint decoding uses the loss function CTC with the weight equal to 0.3. 

There was chosen sufficiently high value of learning rate which is equal to two, due 

to the fact that 15 hours for ASR training is very low. 

Language models, tested during this experiment was used jointly with the 

decoder of conformer architecture. Results for 15 hours of audio-text Kazakh speech 

are given in Table 15. Weight of language model for experiments, listed in Table 15 

is 0.3.  

 

Table 15 – Comparison of word error rate and character error rate values for ASR 

system trained in different cases for 15 hours of Kazakh language 
 

LM type 
WER/val 

(%) 

WER/test 

(%) 

CER/val 

(%) 

CER/test 

(%) 

Sequential RNN language model with basic 

dataset text 
53.1 54.0 19.1 20.1 

Sequential RNN language model with 

enlarged text data 
48.7 49.1 18.3 18.9 

Transformer language model with enlarged  

text data 
46.2 46.8 17.7 18.2 

TransformerLM with enlarged text data and 

cross lingual transfer learning from English 

language (encoder) 

45.5 46.3 17.3 18.3 

 

After clarifying the fact that language model trained on enlarged text with 

transformer model can decrease error rates for ASR, appeared the suggestion that 

increase in the value of language model weight can make further improvements in the 

performance of ASR. This suggestion is based on the fact that this type of language 

model has better representation for words. Empirical experiments on choosing proved 

our hypothesis.  The lowest error rate achived with the language model weight equal 

to 0.45. Values of error for experiments with different values of lm_weight are given 

in Table 16.  

 

Table 16 – Effect of different values of lm_weight of ASR performance 
 

Lm_weight WER/train (%) WER/test (%) CER/train (%) CER/test (%) 

0.35 43.5 45.6 17.0 17.9 

0.4 44 45.1 17.3 18.2 

0.45 43.2 43.2 17.2 17.4 

0.5 42.7 43.5 16.9 17.8 

 

3.3.5 Discussions and Conclusion 

Use of large size of raw text, so called “Big text”, for training external 

language model have effect on all types of ASR performance metrics, especially on 

word error rate and character error rate. Significant impact of this approach was on 

word error rate, but different language models gave different improvements: training 

“Big text” with RNN language model decreased word error rate by 5%, transformer 

language model by 7.2%. It means that the ability of transformer model to increase 
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the number of trainable parameters makes it more effective and this model can 

decrease the perplexity.  

The transfer learning for Kazakh language over the model for English language 

can improve the results taken by using in the decoding language model by training 

“Big text” by transformer architecture. This study allows to conclude that the use of 

Enhanced language model in decoding is suitable for Kazakh language. Taken results 

also help to conclude, that Transformer model in comparison with RNN model is 

more effective, and it decreases word error rate by 10% in the case of choosing 

optimal value for language model weight against ASR model, which used in 

decoding language model, trained only with the text of entire dataset.  

 

3.4 Transfer learning experiments 
 

3.4.1 Introduction 

The performance of ASR systems built by end-to-end methods depends on the 

size of data to be used in training process. The study, were the author of this thesis 

participated [8, p. 90] proved this idea. Also here stated out that the most 

agglutinative languages from Turkic family are low-resource. They are: Azerbaijani, 

Kazakh, Kyrgyz, Tatar, Turkish and etc. The larger the data, better the accuracy in 

final model. In  and  were obtained better results for large data by training with CTC 

and attention-based end-to-end models. However, introducing the complex of 

computational layers can result to huge number of parameters which cannot be 

reached by training low-resource languages. In order to avoid parameter leakage 

problem for each language the transfer learning method was applied for languages 

which belong to one language family: Kazakh and Azerbaijani languages.  Here we 

also use the advantage of end-to-end models for agglutinative languages which was 

proved in , which states the fact that end-to-end models for these languages does not 

need the integration of language models.  

Transfer learning is the approach which adapts the models which was trained 

on one data to another collection of data for training. This research showed next three 

improvements: 

1. The representations taken in the result of training for one language (Kazakh) 

reduces training time for other language against the training from scratch. 

2. Transfer learning allow to use less data for another language for evaluation 

3. GPU memory usage decreases because transfer learning does not need the 

support for gradients of all layers.  

 

3.4.2 Related works 

As high-quality transcribed data is not available for languages from Turkic 

family, it is necessary to study the ways of improving ASR result parameters for 

these languages. There was performed review for transfer learning and combining of 

end-to-end methods for speech recognition which served as the bases for current 

research. 

DNN based end-to-end ASR systems can use the advantages of transfer 

learning. In  acoustic model was built on the data taken from the phone call records of 
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call center. The model trained with 20 hours of target data over the acoustic model 

trained with large corpus from call centers improved the accuracy by 7.8% in 

comparison with the model trained only with target data for Turkish language. 

Other research proposes another type of transfer learning, called language-

adversarial. This learning type could enable SHL model’s common layers which 

allowed to learn the features, invariant for languages. The dataset IARPA BABEL 

was used for experiments. The result of this study showed that this approach could 

reduce word error rate by 10.1%. In spite the model good performance of the model 

the systems got heavier. 

The next study [40, p. 5884] used the pretrained model on the 100 hours of 

Russian speech taken from VoxForge as a basis for transfer learning. The knowledge, 

extracted from the mentioned dataset was used as a basis for 20 hours speech of 

Kazakh language. This model used LSTM and BiLSTM NNs. In the case of training 

by Bi-LSTM Lemma Error Rate (LER) was reduced to 32%. 

Two major types of end-to-end architectures were compared in the next study 

for Mandarin speech. Here was chosen the best unit type for recognition and the best 

architecture between CTC and attention-based mechanism. As a result, characters of 

Chinese language were found as the best unit for recognition and encoder-decoder 

mechanism on the basis of attention mechanism (35.2%) showed better performance 

over CTC model (35.7%). In the experiments the stage of feature extraction from 

input signals was skipped. Attention mechanism also was used for 60 hours of 

Russian language in . Here authors tests joint use of attention encoder-decoder with 

CTC model on Russian continuous speech and took comparatively better results in 

comparison with other approaches.  

Effectiveness of hybrid approach also was shown in another study . Jointly use 

of LSTM and transformer gave faster output and outperformed the ASR trained by 

transformer by 11.9%. The made review shows that combination of end-to-end 

methods improves performance of ASR systems, while transfer learning can improve 

speech recognition for low-resource language. Both of mentioned approaches were 

used in the current study.  

 

3.4.3 Methodology 
 

3.4.3.1 Training by transfer  

To avoid the problem of resource leakage the transfer learning method was 

applied in end-to-end architecture. The acoustic similarities of Kazakh and 

Azerbaijani languages were used from common layers. Feature extraction was 

performed from multilingual dataset where Kazakh and Azerbaijani languages were 

combined, for embedding acoustic knowledge which are general for two languages. 

Firstly, were trained independent RNN layers using hidden layers which are common 

for languages included in the experiment. Figure 35 demonstrates the input for hidden 

shared layers for transfer learning.   
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Figure 35 – RNN with common hidden layers 

 

Two languages were trained in parallel. The output of each hidden layer for 

RNN is presented as dot product: 
 

                                                  (58) 

 

where layer  -th output for  -th frame is   ,    presents the vector of binary 

elements. Vector’s each element stores information about whether corresponding 

item was changed or remained. The activation function is maxout function. 

Additionally, dropout is applied in training process in order to extract the best 

features in common layers and minimize the risk of overfitting. In order to find the 

maximum for each layer was performed the max pooling. The maximum was found 

next way: 

 

                                                            (59) 

 

where   is the number of each hidden layer’s single output,    is the vector which 

contains these outputs, is the size of pooling is  . RNN processes phonemes extracted 

by Gaussian Mixture Models (GMM) from low-level acoustic data. All parameters 

were moved below the last hidden layer and an additional layer with SoftMax was 

added in order to get the features of low-dimension from recurrent neural network. 

This adaptation which does not destroy entire structure of NN provides maximum 

level of possible nonlinearity for the further calculations.  

 

3.4.3.2 CTC and attention mechanism in joint use 

This section contains discussion about end-to-end approach which provides 

transfer learning on the previously obtained high-level features. Previous studies of 

some authors [38, p. 265] tested the architecture which has one encoder and joint 
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CTC-attention decoder. The already extracted high-level features were trained by 

shallow Bi-LSTM encoder and joint decoder. The described architecture is given in 

Figure 36 [8, p. 88]. 
 

 
 

Figure 36 – The architecture with shallow Bi-LSTM encoder and joint CTC-attention 

decoder 

 

The distribution of probability        over the input, which is given as audio 

signals   in independent conditions: 
 

                                   
 
                      (60) 

 

where        is the initial data at time   for the symbol which is given as   . And 

this is calculated for all   which mean the input.  

The encoder uses Bi-LSTM and location aware attention. Weights of attention 

      contains outputs of  -th encoder together with the  -th decoder. Weights of 

previous layer      and decoder’s hidden outputs     , encoder’s output    are used 

to find     : 

 

                                                             (61) 

 

                                                              (62) 

 

          
 
                                                     (63) 

 

                                                    (64) 
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Here   means convolutional filter;   ,   ,    are weight parameters of 

multilayer perceptron which can be adjusted,    is a context vector. Attention 

mechanism’s posterior probability is found as follows: 

 

                                                        (65) 

 

Loss functions for attention mechanism and CTC, for total case are defined 

next way: 
 

                                                              (66) 

 

                                                             (67) 

 

                                                  (68) 

 

here    serves as a weight for CTC.  

 

3.4.4 Experiments 

This section discusses the dataset characteristics, transfer learning experiment, 

comparison of transfer approach with baseline methods. Audio files of wav format 

were used for experiments with frequency 44.1kHz and bit depth equal to 16 bits. For 

Kazakh language 400 hours (200 hours of spontaneous phone conversation, 200 

hours of regular speech) and for Azerbaijani language 70 hours of speech were used. 

Dev (training) dataset took 80% of the dataset, while 20% was given to test dataset.  

The end-to-end models which were built for this experiments had used during 

training 32 phonemes for Azerbaijani language and 28 for Kazakh language, which in 

sum equal to 60. Total size of dataset to train contained 470 hours of speech signals. 

CTC was trained firstly, then attention-based model. CTC model had six-layer Bi-

LSTM, each layer had 256 cells inside. Attention in the encoder is a three-layer 

directional Bi-LSTM, the number of cells inside is the same as in CTC layers. The 

decoder is LSTM which has 256 cells and only one layer. Dropout values were 

chosen as next: encoder - 0.2, attention - 0.5 and decoder 0.1. The algorithm Adam 

was used as an optimizer. CTC_weight was presetted as 0.3. The width for beam 

search was set to 15. Acoustically similar words of Kazakh and Azerbaijani 

languages were  not distinguished until epoch 45 during the training process. The 

corpus used in training had 71.649 similar words. The model after epoch 45 was 

chosen as a final model as it has the best accuracy. The accuracy and loss function 

values of the training over epochs are depicted in Figure 37. 
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Figure 37 – The accuracy and the loss values of transfer learning process 

 

The phoneme error rate was used as system’s purpose was to recognize 

phonemes and this error rate was calculated using the distance of Levenshtein [158]. 

The result of the experiment was compared with the results of other studies and it was 

determined that the result of the current study outperforms others found in the state of 

the art, as shown in Figure 38.  

 

 
 

Figure 38 – Transfer learning result in comparison with other studies 

 

3.4.5 Discussion 

The last stage of the experiment contains the comparison of obtained model in 

the result of transfer learning with other models, built without application of transfer 

approach. The model considered model was compared with basic models like DNN-

HMM which were described in [153, p. 397] and . Another end-to-end method with 

complex encoders is dedicated to construct a model for presenting the raw data from 

input as a sequence of audio or characters [160, 161]. Some of the studies used jointly 
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CTC and attention, which consists of shallow RNNs. In the result of experiments it 

was proved that the approach proposed for transfer learning outperformed all 

mentioned end-to-end methods: for example, the result obtained with DNN-HMM in  

was 31.5%, the result taken with WaveNet in [159, p. 472] was 18.8%, the result with 

CTC-LM in [153, p. 397] was 17.9%, end-to-end with the use of transfer for English 

and Persian languages was 19.41%. The comparison of the results of the current 

study is depicted in  

Figure 3838. According to this figure it can be concluded that end-to-end joint 

transfer model’s error rate is the least among other similar researches, reaching the 

value equal to 14.23%. But the taken result is still cannot reach the accuracy of 

human level and is significantly slow for real-time recognition.  

 

3.4.6 Conclusion 

The performance characteristics of ASR system critically depends on the 

quality and diversity of the datasets used for training. Therefore, speech corpuses 

were carefully collected for both of Kazakh and Azerbaijani languages were 

collected. Collected speech contains audio data from open sources and phone 

conversation speech, which can be determined as spontaneous. In the result, 400 

hours of Kazakh speech and 70 hours of Azerbaijani speech were combined.  

An end-to-end transfer model was proposed for these languages, in which the 

first stage performed feature extraction using NMF algorithm, and the second stage 

trains joint CTC-attention model using these features. Transfer learning had two 

levels, like bilingual and multitasking. The results of experiments proved that the  

model proposed outperforms modern speech recognition approaches. The final 

phoneme error rate was 14.23% which is relatively small in comparison with results 

of other modern systems.  
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4 DISCUSSION 
 

All types of machine learning tasks need adequate datasets to be trained. 

Automatic speech recognition also needs hundreds and thousands of hours of 

transcribed data. It is one of the fields which mainly uses ML after the introduction of 

end-to-end approaches. But the process of collecting and merging the data, collected 

in the real environment, audio-text pair forming and making it usable to train is one 

of the most complex tasks. The 396-hour marked database collected and edited by the 

author in more than 2 years is a valuable contribution of the author to the 

improvement of speech recognition area for Kazakh language. This material can be 

used in experiments for the creation of speech recognition systems in the Kazakh 

language, and can be used to expand other databases and datasets. After merging 195 

hours of speech collected in real time conditions database with 283 hours of 

previously collected data, the total volume of data reached 396 hours, after cleaning 

and removing duplicates. The experiment, performed with this data by training ASR 

on conformer architecture, proves the suitability of this data to use in machine 

learning tasks. Besides, the script written for converting data of different encodings 

into UTF-8 encoding (UTF-8, UTF-16, rk1048) can be applied in different tasks from 

various fields of science.  

The results of the study with multilingual training showed that current 

experiment outperforms previous studies with these languages. For example, in [126, 

р. 4221] the results of transfer learning for Tatar over English character error rate was 

26.42%, while in our experiments it showed five times less errors: 5.30%. The results 

achieved in [125, p. 524] by training languages from different language groups, 

showed improvements for all languages chosen for experimentation. But the results 

did not have dramatic improvement as in the current study: the result of a 

multilingual experiment with languages from one language family and common 

scripts gave promising results for languages which have critically low-resource data: 

test set WER for Kazakh language decreases from 124.20 to 64.30, test set CER 

decreases from 67.70 to 19.30. The chosen architecture: CTC+attention+LM can also 

be applied distinctly to languages of Turkic family.  

The language model trained on “Big Text” gives improved and advanced word 

representation for speech units (words) of a language. This external language model 

is used in the decoding stage. Thereby, inclusion of distinct language models trained 

on the big raw text, which is bigger and different from the entire text of the dataset, 

can decrease the error rate of the ASR system. Experiments proved that it has a 

significant impact on word error rate. Training of so called “Big Text” with 

Sequential RNNLM reduced WER by 5%, with transformer language model reduced 

by 7.20%. By the results of experiments, it is evident that Transformer LM is 

effective in comparison with basic RNNLM model, as it decreased perplexity value 

and increased the number of trainable parameters. Moreover, appropriate choice of 

language model weight value in decoding can decrease word error rate by 10% for 15 

hours of transcribed data.  
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The comparison of the model obtained with transfer learning with other 

models, built without application of the transfer approach, proved the efficiency of 

our approach for transfer learning. The model considered was compared with basic 

models like DNN-HMM, which were described in [153, p. 394] and [159, p. 472]. 

Another end-to-end method with complex encoders is dedicated to construct a model 

for presenting the raw data from input as a sequence of audio or characters [160; 161, 

р. 5510]. Some of studies used jointly CTC and attention which consists of shallow 

RNNs. In the result of experiments it was proved that the proposed approach for 

transfer learning outperformed all mentioned end-to-end methods: for example, the 

result obtained with DNN-HMM in [162, p. 4562] was 31.5%, the result taken with 

WaveNet in [159, p. 472] was 18.8%, the result with CTC-LM in [153, p. 397] was 

17.9%, end-to-end with the use of transfer for English and Persian languages [163, 

p. 3] was 19.41%. The comparison of the results of the current study is depicted in  

Figure 3838.  According to this figure it can be concluded that end-to-end joint 

transfer model’s error rate is the least among other similar researches, reaching the 

value equal to 14.23%. But the taken result  still cannot reach the accuracy of human 

level and is significantly slow for real-time recognition. 

According to the results discussed above it could be stated out that research 

questions listed out in the INTRODUCTION were answered: 

1. A relevant architecture was selected for Turkic languages. 

2. It was proved that transfer learning is effective for languages from one 

language family. 

3. It was proved that multilingual training for Turkic languages with common 

scripts decreases ASR error rates for each language included in the experiment.  

4. Transcribed audio corpus for Kazakh language Enlarged. 

5. A language model trained on Transformer architecture with enhanced text 

corpus decreases error rates in end-to-end ASR. 

6. A new automatic speech recognition model was trained for Kazakh langage 

7. The programming product was constructed, which can translate speech to 

text.  

Results of researches were presented and discussed in different conferences 

and seminars and some of them were published. Moreover, the author was awarded 

with certificates as a seminar speaker, for the best presentation: 

1. O. Mamyrbayev, D. Oralbekova, A. Kydyrbekova, T. Turdalykyzy and A. 

Bekarystankyzy, "End-to-End Model Based on RNN-T for Kazakh Speech 

Recognition," 3rd International Conference on Computer Communication and the 

Internet (ICCCI) (Tokyo, 2021 – 25-27 June). 

2. Certificate to the seminar speaker on the topic “Improved Speech 

Recognition for Agglutinative languages”, Coimbra Institute of Engineering (ISEC), 

(Coimbra, 2023 – 21 April). 

3. Certificate for the best presentation speech, “Improve Automatic Speech 

Recognition for Kazakh Language using Extended Language Model”, “ACeSYRI 

Young Researchers School” (Almaty, 2023 – 5-10 June). 
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4. A. Bekarystankyzy, O. Mamyrbayev, “Improve Automatic Speech 

Recognition for Kazakh Language Using Extended Language Model”, 21 scientific 

conference, (Riga, 2023 – 20-21 April). 

5. Automatic Speech Recognition Improvement for Kazakh Language with 

Enhanced Language Model // Recent Challenges in Intelligent Information and 

Database systems. ACIIDS 2023. Part of The Communications in Computer and 

Information Science book series. – 2023. - Vol. 1, - P.538-545 (Springer, Cham). 

Main results of the dissertation research were published in four papers, one of 

which is published in a periodical journal with non-zero impact-factor and indexed by 

databases Scopus and Web of Science, three papers published in the journals 

recommended by the Control Committee in the sphere of education and science of 

MHES RK. One of the studies was published as book chapter in  LNAI Book series. 

Autor’s certificates were taken for scripts and programming products, developed 

during research: 

1. M. Orken, A. Keylan, O. Dina, B. Akbayan and Z. Bagashar. Identifying 

the influence of transfer learning method in developing an end-to-end automatic 

speech recognition system with a low data level // Eastern-European Journal of 

Enterprise Technologies. – 2022. - Vol. 1, №115. - P. 84-92 // 

https://doi.org/10.15587/1729-4061.2022.252801 (Scopus, percentile 34). 

2. Bekarystankyzy A. and Mamyrbayev O. Integrated Automatic Speech 

Recognition System for Agglutinative Languages // News of the National academy of 

sciences of the republic of Kazakhstan. - 2023. - Vol. 1, №345. - P. 37-49 // 

https://doi.org/10.32014/2022.2518-1726.167.  

3. Bekarystankyzy A., Mamyrbayev O., Oralbekova D., Zhumazhanov B. 

Transfer learning for an integrated low-data automatic speech recognition system // 

Scientific and technical journal "Bulletin of the Almaty University of Power 

Engineering and Telecommunications". - 2023. - Vol. 1, №60. - P. 185-198 // 

https://doi.org/10.51775/2790-0886_2023_60_1_185.  

4. Bekarystankyzy A. and Mamyrbayev O. End-to-end speech recognition 

systems for agglutinative languages // Scientific Journal of Astana IT University. - 

2023. - Vol. 13. - P. 86-92 // DOI: 10.37943/13IMII7575.  

5. Author’s certificate "Software Product UniCodeKaz" №38545 from 

21.08.2023 (Bekarystankyzy A.)  

6. Author’s certificate "System of transcribing audio files to text" №38833 

from 31.08.2023 (Bekarystankyzy A., Mamyrbayev O., Duisenkhan B.). 
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CONCLUSION 

 

The thesis achieved contributions to the improvement of automatic speech 

recognition for agglutinative languages from Turkic family, especially for Kazakh 

language. The first step of investigations was dedicated to data collection in order to 

enlarge existing datasets of Kazakh language, because training of robust ASR models 

needs sufficient amount of data. In the end it was possible to produce a satisfactory 

dataset with 396 hours of speech and without duplicates. Moreover, a script was 

implemented which can convert the information in Kazakh language from any 

encoding to UTF-8.  

A second step considered multilingual training of languages from one language 

group and which have similar scripts. This approach gave for the language with 

critically low resource an improved error rate. Training languages like Bashkir, 

Kazakh, Kyrgyz, Tatar and Saha from Commonvoice reduced WER for Kazakh 

language to half, decreasing its value for one hour of dataset from 124.2 to 64.3. 

A third part of the studies contains a method which can improve ASR 

performance without the need of collecting and transcribing audio data. Use of only 

raw external text, so called “Big Text” decreased word error rate for 15 hours of 

Kazakh speech by 10%. 

The last investigation contains the study of transfer learning with Turkic 

languages, like Kazakh and Azerbaijani. Here firstly were extracted audio features by 

NMF algorithm. Further these features were trained by CTC-attention joint 

architecture for 60 phonemes, and the final phoneme error rate was the least in 

comparison with other similar studies. To sum up all, it can be concluded that the 

thesis studies and make contributions to improve ASR for Turkic languages, 

especially for Kazakh language. If first stage considers data collection, all other 

experiments and studies are dedicated to improve the ASR performance for low-

resource languages with data pooling methods, like multilingual training and transfer 

learning and improving word representations with external text data. The proposed 

pooling methods easily can be applied in the situations where only low-resource data 

is available. But for some of agglutinative languages from Turkic family even these 

approaches can be inadequate, because these methods also requires at least more than 

15 hours of transcribed data.  

The main contributions of the research were published in three international 

conferences, four journal papers and in one book as a chapter. Also, author’s 

certificates were taken for scripts and programming products developed under 

research. 

Future work can be dedicated for the building of specific architectures for 

Turkic languages and finding metaparameters for tuning existing architectures for 

agglutinative language, more precisely for Kazakh language, because any type of 

training for Kazakh language has incorrect accuracy graph due to binding words so 

called “shylau” and the similar words which have similar body and different 

meanings.  
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APPENDIX A 
 

Certificates to a speaker of the seminars “Improved Speech Recognition for 

Agglutinative languages” 

https://satbayev.university/en/news/the-acesyri-summer-school-began-with-the-

itm-2023-conference 
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APPENDIX B 
 

Author’s certificates of government registration for intellectual object 
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APPENDIX C 

 

Script code for collecting the data of different Unicodes to one file 

 

#The current program is for the preparation of data to machine learning task, exactly 

for automatic sppech recognition.  

#This program writes the contents of text files to one file.  

 

import codecs 

import re 

import sys 

import os 

 

import sys 

 

 

def find_txt_files(directory): 

    names = [] 

    for subdir, dirs, files in os.walk(directory): 

        for file in files: 

            full = os.path.join(subdir, file) 

            index = file.find(".txt") 

            if index != -1: 

                names.append(file[0: index]) 

    return names 

 

 

def find_title(titles, title): 

    for index, item in enumerate(titles): 

        if item == title: 

            return index 

    return -1 

 

 

def _detect_encoding(s): 

    if s.startswith(codecs.BOM_UTF16_BE): 

        return 'utf-16-be' 

    if s.startswith(codecs.BOM_UTF16_LE): 

        return 'utf-16-le' 

    if s.startswith(codecs.BOM_UTF32_BE): 

        return 'utf-32-be' 

    if s.startswith(codecs.BOM_UTF32_LE): 

        return 'utf-32-le' 

    if s.startswith(codecs.BOM_UTF8): 
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        return 'utf-8' 

    m = re.match(br'\s*<\?xml\b.*\bencoding="([^"]+)"', s) 

    if m: 

        return m.group(1).decode() 

    m = re.match(br"\s*<\?xml\b.*\bencoding='([^']+)'", s) 

    if m: 

        return m.group(1).decode() 

    return 'utf-8' 

 

 

def func(value): 

    return ' '.join(value.split()) 

 

 

def remove_in_brackets(mystring): 

    result = mystring 

    while (True): 

        print(result) 

        start = result.find("(!") 

        if start ==-1: 

            start = result.find("( !") 

 

 

        end = result.find(").") 

 

        if start == -1 or start>end: 

            return result 

 

        if start != -1 and end != -1: 

            result = result[0: start] + result[end+1:] 

            result = func(result) 

             

    return result 

 

 

#This function throws the files of different codings, except UTF-8 

 

def main_func(): 

    print(sys.argv[1]) 

    print(sys.argv[2]) 

    print(sys.argv[3]) 

    source_dir = sys.argv[1] 

    target_dir = sys.argv[2] 

    broken_dir = sys.argv[3] 
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    txt_files = find_txt_files(source_dir) 

 

    validated_file = open(os.path.join(target_dir, "validated.tsv"), "w") 

    

validated_file.write("client_id\tpath\tsentence\tup_votes\tdown_votes\tage\tgender\ta

ccents\tlocale\tsegment\n") 

 

    main_title = "" 

    sentence = "" 

    for subdir, dirs, files in os.walk(source_dir): 

        for file in files: 

            full = os.path.join(subdir, file) 

            if file.find(".wav") != -1: 

                main_title = file[0: file.find(".wav")] 

                txt_file_path = os.path.join(subdir, main_title + ".txt") 

 

                if os.path.exists(txt_file_path): 

                    with open(str(txt_file_path), 'br') as reader: 

                        bytes = reader.read() 

                        

 

                        try: 

                            

                            sentence = str(bytes, 'UTF-8') 

                            if sentence == "": 

                                os.system("rm " + full) 

                                os.system("rm " + os.path.join(subdir, main_title + ".txt")) 

                                print(full) 

                            else: 

                                after_bytes = sentence.encode('UTF-8') 

                                print("After_bytes: ", after_bytes) 

                                if after_bytes.startswith(b'\xef\xbb\xbf'): 

                                    after_bytes = after_bytes[3:] 

                                    print(after_bytes) 

                                    sentence = after_bytes.decode('UTF-8') 

                                sentence = func(sentence) 

                                os.system("cp " + full + " " + target_dir) 

 

                                spker = main_title 

                                if main_title.find("spk_") != -1: 

                                    title_part = main_title[len("spk_"):] 

                                    print(title_part) 

                                    spker = title_part[0: title_part.find("_T")] 

                                    print(spker) 
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                                print(main_title, "Senten: "+sentence) 

                                validated_file.write(str(spker) + "\t" + str( 

                                    main_title + ".wav") + "\t" + sentence + "\t\t\t\t\t\t" + "kk" + 

"\n") 

                        except: 

                            txt_file_path = str(subdir + "/" + main_title + ".txt") 

                            os.system("cp " + full + " " + broken_dir) 

                            os.system("cp " + txt_file_path + " " + broken_dir) 

 

                            

#This function processes the files from exception block 

 

def collect_from_broken(): 

 

    print(sys.argv[2]) 

    print(sys.argv[3]) 

    print(sys.argv[4]) 

    target_dir = sys.argv[2] 

    broken_dir = sys.argv[3] 

    after_broken_dir = sys.argv[4] 

 

 

    validated_file = open(os.path.join(target_dir, "validated.tsv"), "a") 

 

    main_title = "" 

    sentence = "" 

    for subdir, dirs, files in os.walk(broken_dir): 

        for file in files: 

            full = os.path.join(subdir, file) 

            if file.find(".wav") != -1: 

                main_title = file[0: file.find(".wav")] 

                txt_file_path = os.path.join(subdir, main_title + ".txt") 

 

                if os.path.exists(txt_file_path): 

                    with open(str(txt_file_path), 'br') as reader: 

                        bytes = reader.read() 

                        try: 

                            if bytes.startswith(b'\xef\xbb'): 

                                bytes = bytes.replace(b'\xef\xbb', b'') 

                                print(bytes) 

                                sentence = str(bytes, 'UTF-8') 

                            elif bytes.startswith(b'\xff\xfe'): 

                                bytes = bytes.replace(b'\xff\xfe', b'') 

                                print(bytes) 
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                                sentence = str(bytes, 'UTF-16') 

                            else: 

                                sentence = str(bytes, 'rk1048') 

 

                            if sentence == "": 

                                os.system("rm " + full) 

                                os.system("rm " + os.path.join(subdir, main_title + ".txt")) 

                                print(full) 

                            else: 

                                sentence = func(sentence) 

 

                                os.system("cp " + full + " " + target_dir) 

 

                                spker = main_title 

                                if main_title.find("spk_") != -1: 

                                    title_part = main_title[len("spk_"):] 

                                    print(title_part) 

                                    spker = title_part[0: title_part.find("_T")] 

                                    print(spker) 

                                print(main_title, "\nSenten: "+sentence) 

                                validated_file.write(str(spker) + "\t" + str( 

                                    main_title + ".wav") + "\t" + sentence + "\t\t\t\t\t\t" + "kk" + 

"\n") 

                        except: 

                            txt_file_path = str(subdir + "/" + main_title + ".txt") 

                            os.system("cp " + full + " " + after_broken_dir) 

                            os.system("cp " + txt_file_path + " " + after_broken_dir) 

 

 

main_func() 

collect_from_broken() 
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APPENDIX D 

 

Source code for Telebot 

 

import subprocess as s 

import os 

 

import string 

import soundfile 

from espnet_model_zoo.downloader import ModelDownloader 

from espnet2.bin.asr_inference import Speech2Text 

 

 

# BEST MODEL: 

tag = "Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_ 

raw_bpe_sp_valid.acc.best" 

# SECOND BEST MODEL: 

#tag = 'Shinji Watanabe/spgispeech_asr_train_asr_conformer6_n_ 

fft512_hop_length256_raw_en_unnorm_bpe5000_valid.acc.ave' 

# EXTREMELY POOR MODEL: 

#tag = "kamo-naoyuki/wsj" 

config = "exp/asr_train_asr_conformer5_raw_kk_char_sp/config.yaml" 

 

model = "exp/asr_train_asr_conformer5_raw_kk_char_sp/valid.acc.ave_10best.pth" 

speech2text = Speech2Text(config, model) 

#d = ModelDownloader() 

# speech2text = Speech2Text( 

#    "model/valid.acc.best.pth", 

#     device="cpu", #cuda if gpu 

#     minlenratio=0.0, 

#     maxlenratio=0.0, 

#     ctc_weight=0.3, 

#     beam_size=10, 

#     batch_size=0 

# ) 

#Strips text of punctuation and makes it uppercase 

def text_normalizer(text): 

    text = text.upper() 

    return text.translate(str.maketrans('', '', string.punctuation)) 

 

 

# Generates and returns transcript given audio file path 

def get_transcript(path): 

    speech, rate = soundfile.read(path) 



107 
 

    nbests = speech2text(speech) 

    text, *_ = nbests[0] 

    return text, rate 

 

# Set necessary paths 

path = os.path.join(os.getcwd(), 'egs') 

files = os.listdir(path+'/audio') 

# For every file in audio directory 

for file in files: 

   # Get transcript, converting to .wav if not a wav 

    if not file.endswith('.wav'): 

        os.chdir(path+'/audio') 

        s.run(f"ffmpeg -i {file} {file.split('.')[0]}.wav", shell=True, check=True, 

universal_newlines=False) 

        os.chdir('../..') 

        file = file.split('.')[0]+'.wav' 

        text, est_rate = get_transcript(f'{path}/audio/{file}') 

        os.remove(f'{path}/audio/{file}') 

    else: 

        text, est_rate = get_transcript(f'{path}/audio/{file}') 

        

    # Fetch true transcript 

    #print(sentence) 

    label_file = open(file.split('.')[0]+'.txt', "w") 

    label = file.split('.')[0]+'.txt' 

    #writes result of regicnition to the file 

    label_file.write(text) 

    # with open(f'{path}/text/{label}', 'r') as f: 

    #   true_text = f.readline() 

    # Print true transcript and hypothesis 

    #print(f"\n\nReference text: {true_text}") 

    #print(f"ASR hypothesis: {text_normalizer(text)}\n\n") 

 

 


