
1

Satbayev University Institute of Automation and Information Technologies

UDC 004.934 Manuscript Copyright

BEKARYSTANKYZY AKBAYAN

Development of end-to-end system for automatic recognition of speech in

agglutinative languages

8D06103 – Management information systems

Thesis for the Degree of

Doctor of Philosophy (PhD)

Scientific consultants

doctor PhD,

associated professor

O. Mamyrbayev

doctor PhD,

professor

Mendes Mateus,

 (Portugal)

Republic of Kazakhstan

Almaty, 2023

2

CONTENT

NORMATIVE REFERENCES…………………………………………..…. 5

DEFINITION …………………………………………………………….….. 6

ABBREVIATIONS ………….…………………………………….….…….. 7

INTRODUCTION…………………………………………………………… 8

1 STATE OF THE ART…………………………………………………….. 12

1.1 Methodology…………………………………………………..…………. 12

1.2 First ASR examples……………………………………………………….. 12

1.3 Introduction of neural models…………………………………………….. 13

1.4 Modern models for ASR……………………………………………….…. 14

1.5 Agglutinative language examples…………………………………...……. 14

1.6 Kazakh Language examples………………………………………………. 15

2 THEORETICAL FOUNDATIONS………………………........................ 17

2.1 Agglutinative languages (definition and necessity of capturing long term

dependencies) ………………………...

17

2.2 NLP………………………...………………………................................... 18

2.2.1 Word Embedding……………………….. 18

2.2.2 Automatic Speech Recognition………………………............................ 19

2.3 Performance metrics………………………...………………………......... 21

2.3.1 Accuracy………………………...………………………......................... 22

2.3.2 Precision and Recall………………………... 22

2.3.3 Word Error Rate (WER) ………………………...…………………….. 23

2.3.4 Character Error Rate (CER) ………………………...………………….. 23

2.3.5 Entropy and perplexity………………………...………………………... 23

2.3.6 Training time………………………...……………………….................. 24

2.4 Speech recognition models………………………....................................... 25

2.4.1 Mathematical model……………………….. 25

2.4.2 Acoustic models………………………...………………………............. 25

2.4.2.1 HMM………………………………………………………………….. 31

2.4.2.2 Gaussian Mixture Model – GMM……………………………………. 33

2.4.3 Hidden Markov Models and Artificial Neural Networks - HMM/ANN... 33

2.4.4 End-to-end models………………………...…………………….......... 34

2.4.5 Sequence models………………………...………………………........... 35

2.4.6 RNN………………………....………………………............................... 36

2.4.7 LSTM………………………...………………………............................. 37

2.4.8 GRU………………………...………………………................................ 39

2.5 Attention mechanism and Connectionist temporal classification………… 41

2.5.1 Connectionist temporal classification…………………………………... 41

2.5.2 Attention Mechanism…………………………………………………… 43

2.5.3 Self-attention……………………………………………………………. 46

2.5.4 Multi-head attention…………………………………………………….. 47

2.5.5 ASR architectures based on attention mechanism……………………… 48

2.5.5.1 Transformer…………………………………………………………… 48

3

2.5.5.2 Conformer…………………………………………………………….. 50

2.5.5.3 Branchformer………………………………………………………….. 52

3 EXPERIMENTS AND RESULTS……………………….......................... 54

3.1 Data collection………………………...………………………................... 54

3.1.1 Introduction…………………………………...………………………... 54

3.1.2 Methodology: raw data collection, combining the collected data into

single corpus and data normalization…………………………..……………...

54

3.1.3 Use of trained ASR model…………………………..…………………... 57

3.1.4 Conclusion………………………...………………………..................... 58

3.2 Multilingual training experiments………………………...………………. 59

3.2.1 Introduction………………………...…………………………….……... 59

3.2.2 Related Work………………………...………………………...………... 60

3.2.3 Materials and Methods………………………...………………………... 62

3.2.3.1 Datasets……………………………………………………...………... 62

3.2.3.2 Speech Recognition Models…………………………………………... 64

3.2.4 Results………………………...……………………….....……………... 67

3.2.4.1 Monolingual ASR Models…………………………………………….. 67

3.2.4.2 Multilingual ASR Models…………………………………………….. 68

3.2.5 Conclusion………………………...………………..…….……………... 69

3.3 Enhanced LM with enlarged raw text data……………………….............. 70

3.3.1 Introduction……………………………………………………………... 70

3.3.2 Related works…………………………………………………………… 70

3.3.2.1 Researches, dedicated to improve ASR for Kazakh Language………. 70

3.3.2.2 Text corpus enhancement for ASR: general case…………………….. 70

3.3.3 Methodology……………………………………………………………. 71

3.3.3.1 LM enhancing…………………………………………………………. 71

3.3.3.2 Featurized representation………………………………….………… 72

3.3.3.3 LM architectures……………………………………………………… 72

3.3.3.4 RNN language model…………………………………………………. 73

3.3.3.5 Transformer language model…………………………………………. 73

3.3.4 Description of ASR architecture and the results of training with LM on

“Big text”………………………………………………………………………

73

3.3.5 Discussions and Conclusion…………………………………………….. 74

3.4 Transfer learning experiments…………………………………………….. 75

3.4.1 Introduction…………………………………………………………….. 75

3.4.2 Related works…………………………………………………………… 75

3.4.3 Methodology……………………………………………..…………….. 76

3.4.3.1 Training by transfer…………………………………………………… 76

3.4.3.2 CTC and attention mechanism in joint use…………………………… 77

3.4.4 Experiments……………………………………………………………... 79

3.4.5 Discussion……………………………………………...……………….. 80

3.4.6 Conclusion………………………………………………………………. 81

4 DISCUSSION………………………...………………………...................... 82

CONCLUSION………………………...………………………...................... 85

4

REFERENCES………………………...………………………...................... 86

APPENDIX A – Certificate to a speaker of the seminar “Improved Speech

Recognition for Agglutinative languages”…………………………………….

97

APPENDIX B – Author’s certificates of government registration for

intellectual object……………………………………………………………

99

APPENDIX C – Script code for collecting the data of different Unicodes to

one file…………………………………………………………………………

101

APPENDIX D – Source code for Telebot……………………………………. 106

5

NORMATIVE REFERENCES

In this dissertation work were used references to the next standards:

ГОСО РК 5.04.034-2011. Государственный общеобязательный стандарт

образования Республики Казахстан. Послевузовское образование.

Докторантура. Основные положения: утвержденный приказом Министра

образования и науки Республики Казахстан от 17 июня 2011 года, №261.

Положение о диссертационном совете НАО «КазНИТУ имени

К.И.Сатпаева». П 029-04-01.01 – 2021.

Instruction for the preparation of dissertation thesis and author’s anstract /

MHES Kazakhstan, External attestation committee. Almaty 2004.

GOST 7.1-2003. Bibliographic report.

6

DEFINITION

In this dissertation the following terms with corresponding definitions are used:

Audio – binary information which stores sound data. In the context of this

work recorded human speech.

Automatic speech recognition – ability of computing machines to extract

speech data from audio files and to transfer it into text format.

Dataset – set of collected data which could be used for further analysis. In the

context of this work, audio files and their transcription in the text format.

Neural networks – system of neurons which can be organic or artificial.

7

ABBREVIATIONS

AI – Artificial Intelligence

ANN – Artificial Neural Network

ASR – automatic speech recognition

BLSTM – Bidirectional Long-Short Term Memory

CNN – Convolutional Neural Networks

CTC – Connectionist Temporal Classification

DLUNN – deep locally unified neural network

GMM – Gaussian Mixture Models

GPU – Graphical Processing Units

GRU – Gated Recurrent Units

HMM – Hidden Markov Models

HMM/DNN – HMM/Deep Neural Networks

LM – Language Model

LSTM – Long-Short Term Memory

MLP – Multi-Layer Perceptron

MSPC – Multi-Scale Parallel Convolution

NLP – Natural Language Processing

TPU – Tensor Processing Units

8

INTRODUCTION

Relevance of the research topic. Automatic Speech Recognition (ASR)

systems are nowadays widely used in different areas of human life, in order to make

it easy for people to interact with computer systems and different applications. For

example, smart assistants, smart home systems, commercial and subtitling

applications allow to control computer systems without touching, from a distance.

Moreover, ASR can make it easy to impaired persons to use electronic devices. For

example, Ahmad et al. study the ways of building ASR systems for people with

dysarthria. Dysarthria is the type of muscle defects responsible for articulation. ASR

development for people with this problem helps them interact not only with digital

systems but also with other persons. Next useful example of involving ASR systems

is the assessment of hearing loss . This type of system can forecast the level of

hearing injury by the quality of answers to questions. But these opportunities are

available only for people who knows widely used languages, like English, Chinese

and Russian. ASR development for low-resource languages still needs enormous

efforts, like data collection and preparation, testing of well-known recognition

architectures, as well as studying the ways of adjusting state-of-the art architectures

for exact languages or the group of languages. The Turkic group of agglutinative

languages, to which the Kazakh language belong to, has many low-resource

languages. Besides the problem of shortage of data to train, agglutinative languages

have other problems stated out below.

Development of ASR systems for agglutinative languages are complex

processes due to the their morphological complexity and richness of grammatical

forms in these languages. According to this, development and fine-tuning ASR

systems for agglutinative languages require additional studies and specific

approaches. Below is a list of several challenges ASR systems for agglutinative

languages can face:

1. Morphems’ analysis and separation. Morphemes in agglutinative languages

can be joined and can be complex, which makes difficult the process of splitting and

analysis of morphemes in speech recognition.

2. Grammatical ambiguity. Agglutinative languages can have a variety of

grammatical forms which can lead to ambiguity. For example, one expression can

have different meanings due to a context. This makes it difficult to exactly recognize

and interpret a grammatical unit.

3. Variety of word-formation rules: in agglutinative languages usually there

exist various rules of word formation which determine how to concatenate affixes

with the root of a word. This also requires complex models and rules for processing

those rules in ASR systems.

There is an enormous number of studies dedicated to the development of

specific approaches and models to get reliable ASR systems for agglutinative

languages. Authors of propose a language model, based on morphemes, where

morphemes are understood as any of prefix, root or suffix in a word. As a result,

authors got an automatic speech recognition system with large vocabulary. studies

9

the performance of transformer-based CTC system which depends on context, trained

with the word pieces taken as training units. Authors note the effectiveness of their

method not only for English and German, but also for one of agglutinative languages

- Turkish language. made research on applying transformer architecture for a

morphological disambiguator using Turkish language. This disambiguator can be

used in any of NLP tasks and speech recognition is not exception here. The

transformer architecture performed well also for another agglutinative language -

Hindi . Here the transformer architecture along with Connectionist Temporal

Classification (CTC), Language Model (LM) showed the lowest error rate for Hindi

language: 3.2%. One more example of using Transformer architecture in ASR

development for agglutinative language is . Here the author compares the

performance of Transformer-XL architecture with LSTM and concluded that

perplexity improvement achieved 29% and Word Error Rate (WER) was decreased to

3% for Finnish language. In authors state out that there are the most widely used and

effective end-to-end architectures for automatic speech recognition: connectionist

temporal classification and attention-based mechanism. Also, in this work mentioned

the lack of transcribed audio-text pair resources for agglutinative languages to train in

order to develop reliable automatic speech recognition systems.

According to the mentioned researches for agglutinative languages it was noted

that dictionary enlarging and transformer architecture are the most effective

approaches for developing end-to-end automatic speech recognition systems for

agglutinative languages. Moreover, the lack of data to train and common

morphological rules and similar soundings of languages from Turkic family of

agglutinative languages served as a basis for providing pooling experiments, like

transfer learning and multilingual training for these languages.

Purpose of the dissertation. The present dissertation was developed with the

aim of studying the ways of improving ASR performance for agglutinative languages

on the example languages from Turkic family.

Research objectives.

1. Analysis of existing ASR approaches for general cases and for agglutinative

languages.

2. Extension and development of data corpus for agglutinative languages.

3. Development of models and methods for automatic speech recognition of

agglutinative languages.

4. System development for automatic recognition of speech in agglutinative

languages.

Object of the study. Modern automatic speech recognition methods and

approaches, especially pooling metods like multilingual training and transfer

learning.

Subject of the study. Agglutinative languages of Turkic family, methods of

Machine learning, namely neural networks for Automatic Speech Recognition:

attention mechanism, convolutional neural networks, performance improvement

methods for critically low-resource languages, a moment from Natural Language

10

Processing methods: word embeddings, and demonstrative Telebot which uses

trained ASR model and web-application, available to translate audio files to a text.

Research methods. Machine learning methods, automatic speech recognition

methods and technologies, natural language processing methods, mathematical

statistics and probability theory.

Scientific novelty of the research. The thesis proposes scientific and practical

novelties, which were applied to practical tasks, especially for improving end-to-end

automatic speech recognition systems for agglutinative language - focusing Kazakh

language and which can easily be applied to other languages. Moreover, contributions

were made to the increase of training data size for Kazakh language. The main

positive results, obtained during the research are listed below:

1. Was developed data corpus for agglutinative languages.

2. Were developed effective models for recognition of agglutinative languages

from Turkic family: transfer, multilingual, extended language model.

3. System for automatic speech recognition for agglutinative languages.

Theoretical and practical significance of the research. Theoretical

importance of the research is that, it proposes the possibility of improving ASR

performance improving only the language model with external “Big Text”, and

shows the possibility of improving performance for all languages included in

multilingual training, transfer learning for languages from one family group. The

possibility of applying all mentioned theoretical statements to train ASR for

agglutinative languages of Turkic family shows the practical significance of the

current thesis. Moreover, text processing algorithms can be applied to wide range of

text processing tasks. Audio-text pair data, collected during research, can be used in

different speech processing tasks.

Statements to be defended. Next statements are proposed to the be defended:

1. Dataset for agglutinative languages was developed.

2. Methods of improving ASR for agglutinative languages were improved.

3. ASR system for agglutinative languages was developed.

Reliability degree and approbation of the results. Researches and their

results related to the thesis topic were presented and discussed in different

conferences and seminars and some of them were published. Moreover, the author

was awarded with certificates as a seminar speaker, for the best presentation

(Appendix A):

1. End-to-End Model Based on RNN-T for Kazakh Speech Recognition // 3rd

International Conference on Computer Communication and the Internet (ICCCI)

(Tokyo, 2021 – 25-27 June).

2. Certificate to the seminar speaker on the topic “Improved Speech

Recognition for Agglutinative languages”, Coimbra Institute of Engineering (ISEC),

(Coimbra, 2023 – 21 April).

3. Certificate for the best presentation speech, “Improve Automatic Speech

Recognition for Kazakh Language using Extended Language Model”, “ACeSYRI

Young Researchers School” (Almaty, 2023 – 5-10 June).

11

4. Improve Automatic Speech Recognition for Kazakh Language Using

extended Language Model // 21 st scientific conference, (Riga, 2023 – 20-21 April).

5. Automatic Speech Recognition Improvement for Kazakh Language with

Enhanced Language Model // Recent Challenges in Intelligent Information and

Database systems. ACIIDS 2023. Part of The Communications in Computer and

Information Science book series. – 2023. - Vol. 1, - P.538-545 (Springer, Cham).

Personal contribution of the researcher. PhD candidate independently

performed and solved the tasks of the PhD thesis. The author designed and

implemented end-to-end models for Kazakh and Agglutinative languages. Made own

contribution in expanding data corpus for Kazakh language. Designed and performed

experimental tests and assessments of the models, both existing and improved

models.

The connection of the dissertation topic with the plans of research work.

Research works under the research topic were conducted within the grant projects:

“Development of an end-to-end automatic speech recognition system for

agglutinative languages” (2020-2022, governmental registration number:

0120РК00344) in the Institute of information and computational technologies SC

MHES RK.

Main results of the dissertation research. There were four papers published

under the research topic, one of which is published in a periodical journal with non-

zero impact-factor and indexed by databases Scopus and Web of Science, 3 papers

published in the journals recommended by the Control Committee in the sphere of

education and science of MHES RK:

1. Identifying the influence of transfer learning method in developing an end-

to-end automatic speech recognition system with a low data level // Eastern-European

Journal of Enterprise Technologies. – 2022. - Vol. 1, №115. - P. 84-92 (Scopus,

percentile 34);

2. Integrated Automatic Speech Recognition System for Agglutinative

Languages // News of the National academy of sciences of the republic of

Kazakhstan. - 2023. - Vol. 1, №345. - P. 37-49.

3. Transfer learning for an integrated low-data automatic speech recognition

system // Scientific and technical journal "Bulletin of the Almaty University of Power

Engineering and Telecommunications". – 2023. - Vol. 1, №60. - P. 185-198.

4. End-to-end speech recognition systems for agglutinative languages //

Scientific Journal of Astana IT University. - 2023. - Vol. 13. - P. 86-92.

5. Author’s certificate "Software Product UniCodeKaz" №38545 from

21.08.2023 (Appendix B).

6. Author’s certificate "System of transcribing audio files to text" №38833

from 31.08.2023(Appendix B).

Structure and size of the thesis. Dissertation thesis consists of the

Introduction, 4 sections, conclusion, bibliography from 163 references, and 5

appendixes. Work is presented in 107 pages and contains 38 figures, 16 tables and 68

equations.

12

1 STATE OF THE ART

This chapter presents a comprehensive review of related work, both in

agglutinative and non-agglutinative languages.

1.1 Methodology

For this section, publications about automatic speech recognition were

searched in four topics: first ASR examples, worldwide examples, examples for

agglutinative languages and, finally, for Kazakh languages. The keywords used were

names of first significant speech recognition systems, names of main methods and

architectures for Automatic Speech Recognition (ASR), like Hidden Markov Models

(HMM), Recurrent Neural Networks (RNN), attention mechanism, ASR for

agglutinative languages and Kazakh languages. It was decided to search for related

documents from scientific databases like Scopus, Google Scholar and Semantic

Scholar as it is possible to find the results of appropriate scientific researches from

these resources. Search with keywords in Scopus database gave 24127 documents,

while Google scholar retrieved 2320000 results and Semantic Scholar gave a list of

documents with 226000 entries. Due to the fact that the taken lists of documents were

very huge, it was decided to narrow down the search process by formulating more

detailed keywords: “Multilingual speech recognition”, “Conformer for Agglutinative

languages”, “Attention mechanism in speech recognition”, “Speech recognition for

Kazakh language”, “Hidden Markov Models in speech recognition”, “Recurrent

Neural Networks for speech recognition” and so on. The most appropriate and Open

Access documents were chosen from the retrieved list of documents. Detailed results

for the basic search keywords are given in Table 1.

Table 1 – Number of results retrieved from databases for different search keywords

Keywords
Databases

Scopus Google Scholar Semantic Scholar

Multilingual speech recognition 1560 195000 110000

Conformer for Agglutinative languages 1 510 11800

Attention mechanism in speech recognition 1435 2470000 937

Speech recognition for Kazakh language 43 21000 43

Hidden Markov Models in speech recognition 7360 319000 18600

Recurrent Neural Networks for speech

recognition
2918 2 20500

1.2 First ASR examples

The first speech recognition system was called “Audrey.” It was developed in

Bell laboratory in 1952 and focused not on words, instead it converted speech signals

to numbers . In other words, it could recognize numbers from zero to nine spoken by

an exact person. Further, there was IBM’s “Shoebox” product introduced in 1962. It

was able to understand 16 words of English language, which consisted of digits and

names of simple arithmetic operations, like “plus”, “minus”, “total,” and could print

13

results of basic arithmetic calculations . Shoebox received commands via microphone

and the microphone converted speech into impulses of the electricity. Then a

measuring scheme classified perceived impulses according to properties of word

sounds and it activated an adding machine.

Significant progress was reached in the system “Harpy,” developed by

Carnegie Mellon University in 1976. This system was based on phoneme recognition

and could understand more than 1000 words. The segmenter based on the feature

extraction was used to provide initial inputs of symbols. Then segmentation followed

by labeling, where the middle points of each segment were compared by templates

saved earlier and adjusted.

Application of Hidden Markov Models [13, 14] based on statistical predictions,

brings a breakthrough in the 1980’s to speech recognition, although researchers

studied this algorithm in the field of speech recognition since 1958. Ability of speech

recognition applications grew to several thousand words, because HMM allows to

predict the most probable sequence of sounds in a speech.

1.3 Introduction of neural models

Next epoch in speech recognition had started with the introduction of

Recurrent Neural Networks (RNN), which brought the concept of “deep learning”.

They are capable of working with sequential and time-based data and can learn

features and long-term dependencies. They are also able to map sequences of inputs

to output sequences at the current time-slot and predict the following timestamp’s

sequence. The first significant advances in RNNs were reached in 2006, with solving

the issue of optimization: authors of introduced the idea of using fast and greedy

algorithms to initialize a slower procedure of learning, which fine-tunes the weights.

Next study showed the advantage of gradient clipping, improved momentum

techniques and obtained improvements in provided experiments on music and text

data. Development of various types of RNNs like Multi-Layer Perceptron (MLP),

bidirectional RNN, Convolutional Neural Networks (CNNs), Long-Short Term

Memory (LSTM), Bidirectional Long-Short Term Memory (BLSTM), and Gated

Recurrent Units (GRU) allowed to build different architectures which receive input

data at one end and give output data at another end, which is called End-To-End

(E2E) architectures.

E2E brought to speech recognition a simplicity. If traditional ASR systems

included many supervised stages, like separate training of acoustic, pronunciation and

language models, E2E maps entered acoustic sequences into a sequence of letters,

words, because it can play the role of these three models inside a single Neural

Network (NN).

Figure 1 [19, p. 052068-2] and Figure 2 [19, p. 052068-2] show the difference

between conventional systems and E2E speech recognition systems.

14

Figure 1 – Example of conventional ASR

Figure 2 – Example of E2E ASR

1.4 Modern models for ASR

Currently, RNN-Transducers (RNNT), Connectionist Temporal Classification

(CTC) and attention-based encoder-decoder are the widely used E2E approaches [20,

p. 1436] in speech recognition. Attention mechanism was adopted to speech

recognition from sequence processing and its introduction started the new area in

Natural Language Processing. This also touched the speech recognition as a part of

NLP. There is an impressive number of research projects which were done about the

application of attention mechanism to speech recognition, such as models with

attention mechanism had outperformed its predecessors like RNN and CNN . For

example, in authors propose a new type of architecture based on attention

mechanism, calling it “Squeezeformer”. This architecture is a modification of so-

called conformer architecture, which is mainly based on attention mechanism .

One of the best speech recognition results among end-to-end architectures was

obtained by convolution-augmented transformer, which is very popular as Conformer

[24, p. 5039]. This architecture takes advantages of both approaches included to its

development: transformer and CNN architecture. Because the transformer can

manage long-term dependencies, while CNN can capture local relations in a

sequence. Trained on the LibriSpeech corpus model, it achieved a Word Error Rate

(WER) of 4.3%, without language model, and a WER of 3.9% with language model.

All mentioned E2E architectures work properly only with large amounts of

data to train. But annotating of speech data with its text equivalent is not easy and not

a cheap process, especially for the tasks of processing the dialects of proper

languages or for the speech recognition of specific tasks. Merging different corpora

of several languages, providing transfer learning among relevant languages, can give

promising results [26-28].

1.5 Agglutinative language examples
There was also research for agglutinative languages from Turkic family, by the

representatives of their speakers and Chinese scientists. Researches of some scientists

are dedicated to the collection of datasets in order to make them open-source: one of

15

Uzbek language was developed open-source, with transcribed audio data which

totally consists of 105 hours . The quality of the data was tested by using these data to

train ASR with DNN-HMM and different end-to-end architectures, like LSTM RNN,

Transformer and Conformer. The best result was obtained with E2E-Conformer

architecture, WER on test set was 17.4%.

In spite of the lack of data to train, some authors attempted to implement ASR

for real applications. In was implemented an ASR using an Azerbaijani speech

dataset for emergency call centers. Here authors used 27 hours of dialogue dataset

and 53 hours of summary dataset and trained a model on Kaldi. Kaldi is open-source

toolkit for speech processing tasks proposed in 2011 . The results of GMM/HMM

and DNN/HMM were compared. Authors realized that use of spelling correction in

datasets before training and application of DNN/HMM for acoustic modeling and

using trigram in language modeling are effective in the recognition of emergency

conversations. One more example of using speech recognition for exact task for

Azebaijani language is provided in . Here authors test CMUSphinx and Kaldi speech

recognition tools on 4 hours of specific data for taxi call applications and realized that

Kaldi gives more accurate results over CMUSphinx.

In authors propose the way of improving hybrid CTC-Attention architecture

by improving feature extraction where they use different sizes of convolutional

kernels. It gives advantage in fusing features of different scales. Moreover, authors

improved attention mechanism by using previous attention weight in the calculation

of attention weights. Authors used BERT model to initialize language model in

decoding. Training the proposed model on Turkish (35 h) and Uzbek (78 h) datasets

from Mozilla’s Common Voice dataset reduced WER by 7.07% and 7.08%,

respectively.

1.6 Kazakh Language examples

Kazakh language is also an agglutinative language from Turkic family.

Currently, among all researches for Kazakh language, the best result was obtained in .

Transformer architecture in joint use with CTC loss function was trained on the 400

hours speech data. In the results, CER was 6.2% and WER -13.5%. The involvement

of language model to joint decoding increased the model size, but reduces CER and

WER by 3.7 and 8.3%, respectively. also studies the joint use of CTC objective

function and attention mechanism. Here authors highlight the rapidness of training

and decoding process with the application of mentioned approach.

Authors of proposed Conformer model for Kazakh language boosted by low-

rank approximation for multi-headed self-attention and balanced softmax-function

which uses penalty algorithm for the words with high frequency. Here low-rank

approximation helped to decrease model size to 20.2 MB by reducing the number of

parameters by 5.3 M in comparison with baseline Conformer-CTC architecture. But

this algorithm is not stable, because the approximation by decreasing the rank size

also affects recognition quality: word error rate goes up, keeping rank size high does

not give expected result: number of parameters stays as in baseline model. For

example, in the case of training with baseline Conformer-CTC, the number of

16

parameters is 47.6 and WER is 10.36. Adding low-rank to baseline model with rank

size equal to 128 keeps all training results as in the base case. Further decrease for

different values of rank size gradually decreases the number of parameters, but

increases error rate for word recognition in parallel.

Transfer learning is also applicable for Kazakh language. In was tested

transfer learning for Kazakh language over the weights of a model for Russian

Language, regarding to the similarity of alphabets and similar sounding of all

intersecting letters. Here authors trained 20 hours of Kazakh language dataset on the

model trained on 100 hours of Russian dataset. In the end result, authors got letter

error rate decreased to 32%. It is observed that transfer learning for Kazakh language

with other language from one language family can help improve recognition for all

languages. Transfer learning on the example of Kazakh and Azerbaijani languages

reduced phoneme error rate to 14.23%.

17

2 THEORETICAL FOUNDATIONS

This chapter reviews the most important concepts about agglutinative

languages, natural language processing, automatic speech recognition, performance

metrics and speech recognition models.

2.1 Agglutinative languages (definition and necessity of capturing long

term dependencies)
Agglutinative languages are languages in which morphological relations

among words are presented by adding suffixes to the root word. In the result, one

word can have several morphological morphemes, which give different grammatical

meanings. But during adding suffixes the meaning of root word does not change.

Next languages are examples of agglutinative and agglutinative like languages:

languages from Turkic family [41-45], Finnish, German, Korean languages.

In the range of this thesis Kazakh language will be studied as an example of

Agglutinative languages. Agglutinative property of Kazakh language is noticeable in

nouns and verbs [43, p. 108]. Grammatical affixes in Kazakh language are added to

the root of a word in order to present tense, case and addressee. For example, the

noun “адам” can be used in different case and counting forms by the adding various

differences of affixes. Different morphological examples of noun “адам” in Kazakh

language are given in Table 2. Morphological examples of the verb “оқу” in Kazakh

language are given in Table 3.

Table 2 – Examples of different morphological form of the word “Адам”

Word in Kazakh language English meaning

Адам Human

Адам-ның Of human

Адам-ға To human

Адам-ды The human

Адам-да Human has

Адам-нан From human

Адам-мен With human

Адам-дар People

Адам-дар-дың Of people

Адам-дар-ға To people

Адам-дар-ды The people

Адам-дар-да People has

Адам-дар-дан From people

Адам-дар-мен With people

Адам-гер-ші-лік Morality

Адам-сыз Without human

18

Table 3 – Examples of different morphological form of the word “Оқу”

Word in Kazakh language English meaning

Мен оқи-мын I study

Сен оқи-сың You study

Сіз оқи-сыз You study

Ол оқи-ды He/she studies

Біз оқи-мыз We study

Сендер оқи-сың-дар You study

Сіздер оқи-сыз-дар You study

Мен оқы-ған-да When I study

2.2 NLP

Natural Language Processing (NLP) - is the sector of Artificial Intelligence

(AI) which studies, develops and applies approaches and models for human-computer

interaction using natural human speech. NLP includes wide range of tasks starting

from tokenization, recognition and generation. Tokenization includes splitting,

syntactic and semantic analyses of a text [50, 51]. Recognition contains tasks of

determining some types of entries into a text, answers to questions and text

classification [52-54]. Text generation is the process of generating sequence of

symbols and words for the tasks of machine translation, dialogue systems and etc.

[55-58]. It is very important to know relations of words to some classes in the tasks of

recognition and generation. One of the basic techniques in this area is word

embedding.

2.2.1 Word Embedding

Featurized representation of word is the probability of the words' relations to

different features and these features stored in vector space. Features are learned from

contextual information and extracted during the training process by calculating

relations among words in sentences and phrases. These representations could be used

in sequence generation processes like NLP and speech recognition processes to

predict the next element of a sentence.

For example, there is a sentence in a dataset:

I like the process of picking apples.

If the trained model have to predict the next word in new sentence which is not

from a known dataset:

I like the process of picking ___________?

What word it will choose from the given example table? Most likely, that it

will choose the word “cherry”. Because its hot representation is very similar to the

hot representation of “apple”. But if your model would not know anything about the

word “cherry” it could not predict it correctly. That is why is it very important for

your model to know more and more words. Example of featurized representations of

words is given in Table 4.

19

Table 4 – Example of words’ featurized representation vector

Words

Features

Ер

(man)

Әйел

(woman)

Әке

(father)

Ана

(mother)

Алма

(apple)
Шие (cherry)

Gender -1 1 -0.97 0.96 0.00 0.02

Parenthood -0.25 0.32 -0.99 0.99 -0.03 0.04

Food 0.00 0.00 0.02 0.03 0.92 0.93

Age 0.43 0.38 0.72 0.78 0.04 -0.08

Size 0.05 0.04 0.08 0.09 0.25 0.12

Pet 0.07 0.08 0.01 -0.02 0.00 -0.03

Fruit 0.00 0.00 0.03 -0.01 0.98 0.94

2.2.2 Automatic Speech Recognition

Speech recognition is the complex task which includes the tasks from speech

processing area and Natural Language Processing, and its purpose is the transferring

human speech into text format. It is based on algorithms, models and approaches

which process acoustic speech information and build models of languages to

correctly interpret words and phrases in a human speech [49, p. 5].

If divide ASR tasks to exact stages, automatic speech recognition task systems

have three main tasks (Figure 3): feature extraction, training and recognition. At the

first stage a feature vector is obtained from original speech signal - compressed

presentation of speech signals, which contains only the information necessary to

recognize.

Figure 3 – General scheme for ASR

Human speech in computer systems is presented as audio recordings. Audio

recording is a long list of numbers measuring the little changes in air pressure

detected by the microphone. The same way our ears perceive the sound and our brain

can extract necessary information. In order to make possible to computer to calculate

the probability of letter or word correspondence to sound piece it is necessary to form

amplitudes of audio record. It is the complicated process where speech signals

presented in the form of amplitudes. There are used two types of methods [60,

c. 116], first type works with frequencies (Mel-cepstral coefficients, coefficients of

linear prediction) and second type is time domain (for example, short-term energy

value). But the problem of feature representation of not totally solved problem, that is

20

why further processing of input speech signals to features is one of the main interests

of researches [61-63], because the main purpose is to make neural networks able to

extract features from raw input [64-66] and map features to appropriate output of

sequences in order to totally exclude human supervision during ASR training process.

Sequence of feature vectors with length equal to is called acoustic or

observed sequence :

 (1)

Using these features human sends words’ sequence, which is equal to :

 (2)

The main task of speech recognition is to find the sequence of words , which

corresponds to acoustic sequence [67, 68]. A model will be built in order to

solve this task. This model should be able to generate all possible sequences of ,

for all word sequences . Let function to return all possible only

for given . Then the recognition is the task of finding the word sequence , which

can generate the closest acoustic sequence according to the model (3):

 (3)

where - is the distance between and . It means that it is necessary to

check all sequences of words .

According to , the main task of an ASR is to map sequence of speech features

to a sequence of notations, like characters or words. If we denote the sequence of

speech features as (4):

 (4)

where T is the length of sequence of speech features and is a vector of speech

features at the frame of time t, it has dimension D. Here sequence of words can be

given as (5):

 (5)

where is a word in the vocabulary which is located at -th position.

Mathematical presentation of ASR can be given as follows based on the theory of

Bayes decision (6):

 (6)

where belongs to all possible sequence of words, is the most probable word.

21

During training of ASR, after finding the most probable word sequence to the

audio from test set performance of ASR is tested by comparing recognized text with

original text. There are several main characteristics in speech recognition, which are

used to assess the ASR model performance. They are accuracy, WER, CER, loss

function value and training time.

ASR systems can be used in wide range of applications, including voice-

controlled devices (smart homes, collaborative robots, artificial reality devices),

smart voice-assistants, laboratory assistants with the support of interaction via voice,

answering machines, dictation systems, transcribing of audio and video records, ASR

systems for impaired persons and etc. There are descriptions of some applications of

ASR systems:

1. Voice assistants like Siri from Apple, Alexa from Amazon, Google

Assistant, Cortana from Microsoft use automatic speech recognition and speech

synthesis. These systems allow user to interact with devices using voice-commands.

2. ASR systems also helps get text transcriptions of audio and video files,

which is very helpful in big data processing, transcriptions of lecture, medical

records.

3. Automatic answering machines are used to automatically recognize and

process voice requests from clients.

4. Technologies for impaired persons and persons with hearing loss can be

used to make them easy to understand speech and interact with devices and computer

applications.

5. Auto translators can help automatically translate a speech from one language

to other language without human to interpret.

2.3 Performance metrics
A summary of the results of predictions in the tasks of classification are stored

in an error matrix, so called confusion matrix, for being used for statistical

calculation. Correct and incorrect results of different observations are classified as

TP (True Positive), FN (False Negative), TN (True Negative), and FP (False

Positive). A TP is when the model predicts positive and the sample is actually

positive. A FP is when the model predicts negative and the appropriate sample is

positive. A TN is when the model predicts positive and the given sample is negative.

A FN is when the model predicts negative and sample is also negative.

Example of confusion matrix is given in Figure 4.

22

Figure 4 – Example of Confusion Matrix

Further will be given definition and mathematical formulations for

performance metrics, which are widely used and specific to the research topic, like

accuracy, precision, recall, word error rate, character error rate, sentence error rate

and training time.

2.3.1 Accuracy

By general definition, accuracy is the sum of correct predictions over the total

number of examples (7):

 (7)

Accuracy calculation for speech recognition usually includes the comparison of

recognized text using ASR with original text [49, p. 10]. Accuracy is determined

based on the correctly recognized words or phonemes. A common method for

calculating accuracy includes several steps:

1. Storing original text. Use dataset of audio files with correct transcription

texts.

2. Generation of audio file transcripts, using ASR system. Align original

transcript with recognized transcript to determine matching words and phonemes.

Usually, this process is performed by dynamic temporal alignment or alignment of

sequences.

3. Calculation of accuracy. Compare aligned original text with recognized text

to calculate accuracy metric. The most common metric is Word Error Rate - the

metric which determines the percentage of not correct or replaced words in

recognized words in comparison with original text. There are other metric types,

which could be calculated depending on the type of recognition rate analysis.

2.3.2 Precision and Recall

Precision (8) and Recall (9) are also calculated on the basis of data taken

from the confusion matrix [71, р. 1-16]:

23

 (8)

 (9)

Precision is therefore a ratio that shows how much of the positive predictions

are correct, while Recall is a ratio that shows how many of the positives are correctly

determined by the model.

2.3.3 Word Error Rate (WER)

WER (10) is the ratio of errors in a recognized text to the total text in the

initial utterance. It is assessed in percentages and it is one of the key metrics of model

performance for ASRs.

 (10)

where S is substituted misspellings, I is insertions of words absent in the initial

transcript, D is deleted (missed) words, WN is the number of words in the initial text.

In alternative, WER can be calculated using accuracy (11):

 (11)

2.3.4 Character Error Rate (CER)

CER is the ratio (12) of errors in a recognized text to the total number of

characters in the initial utterance. It is calculated based on the Levenshtein distance

concept, measured in percentage. It is one of the key metrics of model performance

for ASR:

 (12)

where S is substituted character misspellings, I is insertions of characters absent in

the initial transcript, D is deleted (missed) characters, CN is the number of characters

in the original text.

2.3.5 Entropy and perplexity

Entropy measures information amount for a random variable. By definition:

entropy, so called self-information is the average uncertainty value (13) of a random

variable [49, p. 32]:

 (13)

here is the probability mass function of some random variable X, in terms of

language modelling over the alphabet. It means entropy can be used to evaluate the

24

performance of a language model as good as perplexity. Perplexity is calculated on

the basis of cross entropy in order to perform calculation results in a non-logarithmic

way [49, p. 35]. The less the value of perplexity, the better the performance of a

language model. The relationship between perplexity and entropy is shown here (14):

 (14)

There are different types of entropies, like joint entropy, conditional entropy,

Kullback-Leibler divergence, and maximum and minimum entropy that can be

applied to different tasks. For example, authors of [74, p. 242] give the following way

of entropy calculation: if given corpus to test is and language model

denoted ad , the mathematical formulation of them will be as follows (15):

 (15)

where d is the length of the test document,

 denotes the test corpus

length, means the word in a sequence into the test document. Anyway, the main

purpose of language modeling is to predict the word sequences which are more

natural.

2.3.6 Training time

Training time is the time spent for full training of a model. In general training

time can vary from several hours, to weeks or even months, depending on several

factors. Some of the factors are as follows:

1. Size and complexity of the system.

Large and complex neural networks with big size of layers and many

parameters need more time to train, in comparison to simple networks. Training of

deep CNNs, like ResNet or Inception, can require days or weeks on the most

powerful Graphical Processing Units (GPU) or specialized hardware systems, like

Tensor Processing Units (TPU).

2. Size and quality of the data to be trained.

Bigger size of data needs more time to train. If you have a dataset which needs

preprocessing and augmentation, it can require long time to process and increase the

time for training.

3. Computing resources.

Use of the most powerful resources, such as GPUs or specialized hardware

platforms, can significantly increase the training time. Parallelization of computing in

different units also can shorten the time of training.

4. Choice of optimization algorithms.

Many optimization algorithms do exist, like stochastic gradient descent (SGD),

Adam, RMSProp and others. Choice of appropriate algorithms and their correct

tuning can have impact on training time.

5. Purpose of training.

25

Training time also can depend on the exact task which is to solve. Some tasks

like image classification, usually require less time in comparison with the tasks of

Natural Language Processing (NLP) or text generation.

2.4 Speech recognition models

2.4.1 Mathematical model

The process of automatic translating a speech to text can be represented as a

search of the most probable word (16) sequences according to two estimates:

acoustic and linguistic:

 (16)

where is the probability of hypothesis occurrence by acoustic model,
is the probability of hypothesis by language model.

2.4.2 Acoustic models

For acoustic modeling of speech Hidden Markov Models (HMMs), are usually

used. Here each allophone (speech sound) is represented by one continuous HMM of

the first order. The phoneme model most often has three states: the first describes the

beginning of the phoneme, the second represents the central part, and the third the

ending. The HMM of a word is obtained by connecting phoneme models from the

corresponding phonemic alphabet into a chain. In a similar way, word models are

connected to each other, forming phrase patterns. HMM states are described by

means of mixtures

Gaussian probability density distributions (Gaussian mixture model - GMM),

which provide a fairly complete coverage of possible variants of pronunciation of

phonemes, taking into account phonetic contexts and speaker differences. The goal of

training acoustic models based on the HMM is to determine, from the training

sequence of observations, such model parameters with which the probability of this

sequence would be maximum. Context-independent phonemes or context-dependent

phonemic implementations can be used as acoustic units in speech recognition

systems. The advantage of using context-dependent units is their ability to model the

effects of coarticulation between adjacent sounds. Therefore, in modern speech

recognition systems, context-independent models (monophones), which correspond

to phonological units of a phonemic set, are often replaced by context-dependent

models (triphones). HMM is the most widely used method for modeling acoustic

units, but HMM is not without drawbacks. In particular, they have weak

discriminative abilities, that is, the ability to separate classes of words.

The most common language models are statistical models based on n-grams of

words, which estimate the probability of the occurrence of a sequence of words in

some text. n-grams are a sequences of n elements (for example, words), and the n-

gram language model is used to predict an element in a sequence containing n-1

predecessors . The disadvantage of n-gram models is that they predict a word based

on a pre-existing context of a certain length. Usually a context of three words

26

(trigrams) is taken, less often - of four or five words. The use of a longer context is

problematic, since, firstly, it requires a very large amount of training data, and

secondly, it significantly increases the size of the language model and, as a result, the

speed of speech recognition falls down.

Use of artificial neural networks in speech recognition systems allowed to

increase recognition accuracy in comparison with basic models (HMM for acoustic

modelling, n-grams for language modelling). Basic types of neural networks used in

speech recognition are given in Figure 5.

Neural networks can be used for both acoustic and language modeling,

improving recognition accuracy. NNs can be divided into feed-forward networks and

backward networks. There exist different varieties of NNs, among which the main

types can be distinguished: perceptrons, autoencoders, convolutional neural network

(CNN), NN with time delays (time delay neural network; TDNN), deep belief

networks (deep belief networks; DBN), NN with long short-term memory (Long

Short-Term Memory; LSTM), Bi-LSTM(Bidirectional LSTM).

In some studies , it was shown that the use of NNs together with HMMs allows

to improve the accuracy of speech recognition, while HMMs provide the ability to

model long-term dependencies, and NNs provide the possibility of discriminant

learning [7].

Figure 5 – Classifications of NNs in speech recognition

27

Acoustic models are usually built on the basis of deep neural networks

(DNNs), which are forward-propagation ANNs containing more than one hidden

layer between the input and output layers. There are exist many methods for

combining neural networks and HMM. Two main methods among existing methods

are: 1) building hybrid HMM/DNN models; 2) construction of tandem models. In

hybrid systems, neural networks are used to obtain HMM posterior probabilities.

In the tandem method, the output of the neural network is used as an additional

feature stream for HMM training.

To increase the accuracy of recognition, the bottleneck method was also used.

In a bottleneck neural network, the middle layer has fewer elements. The input data

for the neural network are features such as mel-frequency cepstral coefficients

(MFCC) or perceptual linear prediction (PLP) coefficients. After training, the layers

behind the bottleneck layer are removed. The output of neurons in the bottleneck

layer serves as acoustic features for standard speech recognition systems using

HMM.

Studies on combining ANN and HMM for acoustic modeling were started in

the late 1980s . However, such studies were not popular at that time, due to the fact

that NN is a resource-intensive task and requires high-performance computers. In

recent years, due to the increase in the computing power of computers, the use of

ANNs in speech recognition systems, including for acoustic modeling, is becoming

increasingly popular. The development of a parallel computing platform using the

NVidia CUDA graphics processor made it possible to significantly reduce the

training time of deep ANNs on large data volumes, which contributed to an even

greater spread of neural network models in speech recognition systems .

Last studies in the area of acoustic dedicated to the ways of excluding

processing raw features by HMM. For example, in , the possibility of obtaining

features directly from a neural network without converting output probabilities to

features suitable for HMM was studied. Experiments were carried out using a five-

layer bottleneck perceptron in the middle layer. After training the network, the output

from the bottleneck layer was used as features for the speech recognition system. At

the same time, an increase in recognition accuracy was obtained when these features

were used instead of probabilistic features; in addition, the size of the model was

reduced, since only part of the neural network was used.

Parameters are one of important factors with neural networks. The paper

describes a study of which parameters of neural networks are most important for the

operation of a speech recognition system. It has been shown that with the increase in

the size and depth of the model, the efficiency grows only up to certain limits. In

addition, a comparison was made of standard deep neural networks, convolutional

neural networks, and deep locally unified neural networks(DLUNNs), which showed

that DLUNNs can significantly improve recognition accuracy.

In , neural network for acoustic models were trained using Kaldi and Python

deep learning toolkit (PDNN) software. Acoustic models were trained as follows:

first, acoustic models using Gaussian Mixture Models(GMMs) were created using

Kaldi, then a deep neural network was trained using PDNN, and finally the trained

28

neural network models were loaded into Kaldi for speech recognition. The article

describes four implementations: hybrid model; a tandem model using features

obtained from the bottleneck layer; joint use of previously mentioned two methods a

hybrid model based on a convolutional neural network.

A convolutional neural network consists of one or more pairs of convolutional

and pooling layers. The architecture of a convolutional neural network is shown in

Picture 2.4. In a convolutional neural network, the activation signal of each neuron is

calculated by multiplying a small part of the input data(several vectors of features

from Figure 6) by the weight matrix W. Then the weight matrix is shifted for the next

part of the input data, thus the weight matrix is shifted over the entire input feature

space. At the output of the layer, a feature map is formed. The pooling layer performs

downsizing of the input feature map by selecting the maximum element. The merging

layer allows you to reduce the influence of speaker variance on the model parameters.

A convolutional neural network for acoustic modeling was used in , where neural

network adaptation to the context of convolutional neural networks was studied,

which made it possible to reduce the relative recognition error by 6%.

Figure 6 – CNN architecture

Neural networks with time delays are also used for acoustic modeling. They

are a multilayer neural network of direct propagation, the nodes of which are

modified by introducing time delays . An example of a node with N delays is shown

in Figure 7. In the figure, are the inputs of nodes; each of the J inputs is

multiplied by the corresponding factor of weighting ; are time delays and F

is an activation function . Here short-term memory is built into the artificial neural

network. The introduction of a time delay makes it possible to make the ANN

invariant to time shifts. In , the use of neural network with time delays made it

possible to obtain a relative decrease in the error rate for word recognition by 2.6%.

29

Figure 7 – Example of neural network with time delays

Another type of neural networks are recurrent neural networks. The presence of

feedback provides the neural network with memory, which makes it possible to

simulate dynamic processes. One of the types of RNNs used for acoustic modeling is

the LSTM network containing special elements called memory blocks. Memory

blocks contain cells that store the temporary state of the network, as well as

multiplicative elements called gates (gates), which control the flow of information.

Each block of memory contains an input gate, an output gate, and a forget gate. An

example of an LSTM network memory block is shown in Figure 8. In the figure, is

the input vector at time t, is the output vector. An LSTM network cell can be

considered as a complex network element capable of storing information for a long

time. Gates determine when the input is relevant and needs to be remembered, when

the information should continue to be remembered or forgotten, and when the

information should be output. It was shown in [91, p. 631-634] that the use of LSTM

in a hybrid RNN/HMM model makes it possible to reduce the word recognition error

compared to the use of DNNs.

30

Figure 8 – Example of LSTM unit

Recently, end-to-end speech-to-text systems using only neural networks are

popular. They do not train HMM models. End-to-end systems consist of two

submodules: an encoder and a decoder. The encoder reads the input signal, calculates

the features of the signal and converts it into an intermediate parametric

representation. The decoder converts the parametric representation of the signal into a

sequence of symbols. In , an end-to-end system was built on the basis of a

convolutional neural network and the neural network temporal classification method

(CTC) . The developed approach was tested for the problem of phoneme recognition,

and the phoneme recognition error was 18.2%. The network with LSTM units was

used to build the end-to-end system described in . Without the use of linguistic

information, the word recognition error was 27.3%, the use of a dictionary made it

possible to reduce the error to 21.9%, with the trigram model of the language, the

word recognition error decreased to 8.2%.

Despite of breakthrough achievements in E2E STT systems, some of actual

ASR systems use architectures similar to old constructions and consequently use

methods derived from them: discriminative training methods, HMM, GMM and

HMM/DNN. This approach needs a hand-made phoneme dictionary built on

developers’ suggestions which is then used to build context dependent phonetic

model. During the building of phonetic model text tokenized not into words, text

splitted to phoneme groups . According to this, given detailed descriptions of these

31

methods concurrently with modern STT architectures and approaches are given

below.

2.4.2.1 HMM

Hidden Markov Models are static models, which are used for modelling

sequential data. They are widely used in the tasks where data has temporal or

sequential structure, like speech recognition, NLP, bioinformatics and other

applications. HMM consists of two main components: hidden sequence of states and

observable sequence of characters. Inside of HMM exists the set of states which form

the hidden sequence. Each state can generate certain characters, forming observable

sequences. Transfer probabilities of between states and probabilities of character

generation are determined by model parameters.

The main assumptions of HMM:

1. Markov Assumption: a current state depends only on previous state. It

means that current state depends on the state that exactly prior to it and does not

depends on other previous states.

2. Assumption about observability: Observed variable (character) depends

only on the current state, and does not depends on other states or other characters.

The main tasks related to HMM are probability definition of observed

sequence, decoding of state sequences, model training. The main task of probability

definition of the observed sequence is the calculation of character sequence under the

given model of HMM. The main task of state sequences decoding is the finding of

the most probable sequence of hidden states which is appropriate to the given

sequence of characters. The main task of model training is the assessment of

parameters on the basis of selected data from observed sequences. HMM training is

usually performed by using Baum-Welch algorithm which is the variation of

expectation-maximization (EM) algorithm. Additionally, forward-backward

algorithms and Viterbi algorithm are widely used for decoding.

Application of HMM in speech recognition

HMM is defined as set of triple parameters :

 (3)

where A is the matrix of transition probabilities, B is the probability matrix of output

observations, and is the probability vector of initial states. Matrix A consists of

elements , where these elements are probabilities of transitions from state to state

 . Matrix B contains elements , where is the observation probability of

feature vectors in the state . Finally, consists of components, called -

probabilities of being in the state at the beginning time.

Statistical models of phonemes, words and whole phrases are created with the

help of HMM. The choice of a specific language object depends on the tasks to be

solved by the speech recognition system being developed. Usually, it is possible to

distinguish the following approaches to the construction of the HMM (they can be

both mutually exclusive and complementary) [97, p. 275]:

32

1. HMM is used to model phonemes - sound letters of the language, which

can be combined into words.

2. Phonemes are modeled using three states - initial, middle and final (Figure

9). This is due to the fact that speech trajectory cannot change its characteristics

instantly, and while moving from a phoneme to another phoneme it goes “through”

intermediate states.

3. Phonemes can sound in different ways depending on other sounds around.

This process is called coarticulation Two types of phoneme models exist depending

on whether this phenomenon will be ignored or not: monophones and triphones.

4. A separate HMM is composed for each word from the dictionary and the

most appropriate is chosen during recognition. This approach is very good for

recognition of distinct words.

5. One HMM can be composed by joining HMMs for through internal

states(for example, silence), according to the language grammar. It is necessary for

the recognition of continuous speech.

Figure 9 – HMM fragment for "n” and “a” phonemes which include tree states:

initial, middle and final

Use of HMM for the recognition of isolated words is based on the calculation

of probabilities with forward propagation, which is defined as the probability of

observed sequence , which is in the state at the time moment
for the model (18):

 (18)

Calculation of goes recursively. Achieving the end of observed sequence,

exactly to , it is necessary to sum up for all states, after taking the

probability of observing sequence for the given HMM (19

):

33

 (19)

This probability can be used to recognize isolated words: each word is modeled

by HMM . At recognition it is important to choose the HMM which available to

generate observed with the highest probability (20):

 (20)

The method described for calculating is called the algorithm of

forward pass and it is also the base for reassessment procedures of HMM (Baum-

Velshch algorithm). Another famous algorithm is the algorithm of Viterbi, which is

used to find the optimal sequence of HMM states , which

corresponds to the given sequence of observations. These algorithms also works

recursively, but instead of increasing sum at each step, movement goes by maximum.

2.4.2.2 Gaussian Mixture Model – GMM

There are two main approaches to determining the probabilities of

observations: mixtures of Gaussian probability density distributions (Gaussian

Mixture Model; GMM) and artificial neural networks.

Until about 2010, the Gaussian mixture model was used in practice to specify

the distribution of the observed signal depending on the phoneme. To do this, the

audio signal is divided into small sections (10-50 ms), to apply traditional signal

processing in the frequency domain, a fast Fourier transform is performed for each

section of the signal. Further, the logarithm of the resulting spectrum was used in

connection with the well-known logarithmic perception of the sound scale by the

human ear. Finally, using the discrete cosine transform of the logarithm of the

spectrum, practically independent features were obtained – cepstral coefficients, the

distribution of which was written as a mixture of Gaussian random vectors with

diagonal covariance matrices.

In a system using mixtures of Gaussian distributions probability densities, the

probabilities of observations are defined as (21):

 (21)

where is the number of components in mixture, is the weight of Gaussian

distribution , and are elements of mathematical expectations

vector and covariance matrix.

2.4.3 Hidden Markov Models and Artificial Neural Networks - HMM/ANN

In the hybrid HMM/ANN model, the probabilities of observations are

calculated using a neural network. The neural network calculates the probabilities

depending on the class . It means, we can calculate the probabilities of

observations using Bayes' theorem (22):

34

 (22)

Various neural network architectures, like Multilayer Perceptron, Recurrent

Neural Networks, Long-Short Term Memory, Gated Recurrent Units and

Convolutional Neural Networks are used to build hybrid models [101, c. 81]. The

architecture of the hybrid model is shown in Figure 10.

Figure 10 – Hybrid HMM/DNN model architecture

2.4.4 End-to-end models

It has been shown in many works that the use of neural networks at each step

of the scenario of a standard speech recognition system improves the quality of its

work. So, for example, in language models were trained using RNN, in a dictionary

was obtained using LSTM networks, in deep neural networks showed good results

for building acoustic models, in a method was presented feature extraction using

limited Boltzmann machines . Consequently, the idea arose to use artificial neural

networks at all stages of speech recognition.

In the case of speech recognition, the integral approach tries to calculate

 "globally". Let the input be a sequence of sound features X, and the

corresponding sequence of words is W. Thus, the neural network calculates the

probabilities P where the probability arguments are not

35

the sequences of words themselves, some of their representations (hereinafter referred

to as labels).

Figure 11 [101, c. 83] shows a general diagram of the integrated system. At the

moment, there is a huge amount of architectures and neural network types for

implementing integral models. Further will be given detailed and short descriptions

of working principle of the most popular approaches for speech recognition.

Figure 11 – General scheme for E2E ASR system

2.4.5 Sequence models

Sequence models belong to the class of supervised learning and consist of

artificial neurons, which have feedback loops and can be used to solve various

problems such as speech recognition, speech synthesis, music generation, different

type of classification tasks, machine translation, and video activity recognition. But

the limitation of these models is only input or the output can be a sequence. In other

words, sequence models can be used to solve any type of supervised learning

problem that contains time series in either the input or output layers.

Traditional neural networks assume that all inputs (and outputs) are

independent of each other and therefore will not work in sequence prediction because

previous inputs are inherently important in predicting the next output. For example,

when predicting the next word in a text sequence, we need to know at least several

words before the word to be predicted. Traditional neural networks require that the

lengths of input and output sequences be constant across all predictions. Sequence

model networks can solve this problem directly.

Figure 12 – Types of sequence models

Sequence modeling has many types of networks: including one-to-one, one-to-

many, many-to-one, and many-to-many, as shown in Figure 12. When generating

36

music, the input can be an empty set, and the output can be a song (one-to-many),

while in speech recognition, only one word can be obtained from a long set of sound

characteristics(many-to-one). Many-to-many architecture where the length of the

input and output sequences are different can be implemented using the encoder and

decoder approach. Many-to-many models are known as "sequence-to-sequence"

models.

The most popular and widely used algorithms for sequential models are: RNN,

LSTM, GRU.

2.4.6 RNN

The whole point of processing a connected sequence of data is to be able to

take into account the connection of elements in addition to extracting a response for

each element. For example, it is possible to represent an image as a set of vectors,

each containing the pixels of one column. If we want to teach the network to classify

natural language sentences (for example, determine the emotional coloring of a

sentence), and feed one word after another to the network, we want the network to

“remember” the words already transmitted. If we want the network to translate a

sentence from one language to another, then it would also be good to take into

account the beginning of the sentence when translating the middle and end.

It is the task of “remembering” the elements of the sequence that have already

been looked at and is supposed to be solved using a recurrent network. To do this, in

addition to the output vector, the network must also have some vector that describes

the current internal state of the network, i.e. it contains memories of all the elements

already viewed by the network. More formally, it looks like this.

Consider, we have set of input vectors and they will

sequentially transformed (23):

 (23)

Moreover, in addition to the output (which we may not need at each step),

we also have a vector describing the current state. Thus, the network consists of

cells of the form as shown in Figure 13.

37

Figure 13 – RNN cell

These cells are assembled into a sequence, passing the internal state from the

cell to the one following it in time. Note that the weights in this case for all cells are

the same (Figure 14).

Figure 14 – Sequence of RNN cells

2.4.7 LSTM

The problem with basic RNN cells is that they cannot "keep in memory" very

long sequences. This is due to the fact that when we pass gradients through a

sufficiently long sequence, we encounter one of two problems: either the gradients

decrease so much that errors at the end of the sequence no longer affect its beginning,

or the gradients increase, and the process diverges. The same problem exists in

conventional networks: by adding layers, appear difficulties with training (hence

architectures of ResNet and other approaches). To overcome this problem, it was

38

proposed to replace conventional RNN cells with a more advanced version: the

LSTM. In the basic version of LSTM, was added one more internal state of the cell

which helped to extinguish the problem of vanishing or exploding gradients. Also, an

input and an output gate were added to the LSTM cell. This approach proposed the

solution that input data will have effect on internal state and internal state will affect

the output. Its working principle is given in Figure 15.

Figure 15 – LSTM cell structure

If we present the working principle of LSTM formally, it looks like as follows

(24):

 (24)

Here and are the input and output gates, respectively, and denotes

the operation of elementwise multiplication. Those Here and are assumed to

be vectors of 1-s and 0-s that allow to pass or do not pass some components of the

vector through themselves.

The concept of the gate was so effective that later they were added another one:

forget gate (Figure 16). This gate allowed additional zeroing of some components of

the internal state before passing them on.

39

Figure 16 – LSTM with forget gate

Formally it looks this way (25):

 (25)

Here is a forget gate.

2.4.8 GRU

Gated Recurrent Unit (GRU) is a modified, simplified version of LSTM, in

which long-term and short-term memory are combined into a so-called Hidden State.

It only has a latent state that can combine both long-term and short-term memory.

The GRU was introduced in 2014 to solve a common vanishing gradient problem

faced by programmers.

Vanishing gradient problems occur when the gradient tends to decrease after

backpropagation over time and ceases to be of benefit in the learning process.

Therefore, in registered neural networks, if the first levels gain the least amount of

gradient, their learning process stops. Since these layers are not trained, the RNN

40

does not remember anything from the experience of longer runs of data and runs into

short-term memory problems.

GRUs are a variation of the RNN design. They use the gating process to

manage and control the flow of information between the cells of a neural network.

GRUs can make it easier to catch dependencies without ignoring past information

from massive chunks of serial data. GRU does all this using its gates, which help

solve vanishing gradient problems often encountered in traditional registered neural

networks. These gates help control the information that should be kept or discarded at

each step. It is also worth remembering that controlled recurrent blocks use reset and

update gates. GRU structure is given in Figure 17.

Figure 17 – GRU structure

GRUs have an update gate function. The main function of an update gate is to

determine the ideal amount of previous information that is important for the future.

One of the main reasons why this feature is so important is that the model can

replicate every detail of the past to eliminate the vanishing gradient problem.

GRUs also have a reset gate function. The main reason why reset gates are

vital is because they determine how much information should be ignored. It would be

fair to compare the reset gate to the forget gate in LSTM as it tends to classify

unrelated data and then force the model to ignore it and act without it.

Formally it looks this way (26):

 (26)

41

Here is the output of update gate, is output of reset gate, is a

candidate state, is a hidden state, the operation of elementwise multiplication.

2.5 Attention mechanism and Connectionist temporal classification
There are two major architectures for ASR: Connectionist-Temporal

Classification (CTC) and attention-based methods, both of them based on RNN. In

CTC, the acoustic model emits not only output characters, but also emits blank

neutral symbols which serve as connectors for the final output sequence of symbols.

Neutral symbols allow the network to implicitly align longer acoustic features to

output sequences of characters which is very short in length [96, p. 287].

CTC is a widely used deep learning algorithm of ASR systems. CTC was

proposed by Alex Graves in 2006 [93, р. 1-8] and is widely used in modern ASR

systems because it is able to handle variable-length sequences of input. CTC operates

on the output of a neural network. The main purpose of CTC is to map the output

E2E network to a sequence of characters which is the text of the spoken words. CTC

considers all possible versions of alignments between the output of an E2E network

and the target output sequence and computes the probability for alignment. The

output of the CTC algorithm is the alignment with the highest probability.

Advantages of CTC over traditional ASR algorithms are as follows: CTC does not

require explicit segmentation of the input signals, that is why this algorithm is more

robust to different variations in the speed of speaking and pronunciation.

Attention-based methods use the attention-based neurons to explicitly align

acoustic frames to output characters. Attention-based methods can model statistical

dependency between input and output sequences [96, p. 287].

2.5.1 Connectionist temporal classification

Neural networks in speech recognition are usually trained using individual

fragments of audio recordings of speech. To do this, it is necessary to allocate

separate marks corresponding to each frame, which entails the need to align the audio

track and transcription. However, alignment is only reliable after training the neural

network, which leads to a circular relationship between segmentation and recognition

(known as Sayre's paradox). Moreover, in speech recognition tasks based only on

word transcription, alignment is not useful.

Connectionist Temporal Classification [93, р. 1-8]. is a function that allows

recurrent neural networks to be trained to recognize a sequence of words without

initial alignment of input and output sequences.

To describe how the CTC works, let's start with an approach in which the CTC

function is used as a loss function to train a neural network. The output layer of the

neural network contains one block for each character of the output sequence (letters,

phonemes, punctuation marks) and one more for an additional "blank" character,

which corresponds to an empty output character. The output vector is normalized

42

using the softmax function, which is interpreted as the probability of occurrence of a

blank character with index at time (27):

 (27)

where
 is the -th element, is the length of a word. Let be a sequence of

“blanks” and characters to align. The probability can be represented as a

product probabilities of occurrence of symbols at each moment of time (28):

 (28)

For a given output sequence | |, there are as many possible alignments as

possible ways of placing "blanks" between characters. Let "-" mean "blank". For

example, the alignments (x,-, y, z, -, -) and (-, -, x, -, y, z) correspond to the sequence

(a, b, c). When identical characters appear consecutively, these repetitions are

removed: (x, y, y, y, z, z) and (x, -, y, -, z, z) correspond to (x, y, z). Let's denote that

 is an operator that first removes all repetitions, and then removes "blanks". Thus,

the total probability of the output sequence is equal to the sum of the probabilities

of all possible corresponding alignments (29):

 (29)

where is the operator reverse to .

This sum over all possible alignments allows the neural network to train on

non-segmented data. It means, without knowing the exact location of the labels, we

summarize over all the locations where they can be. This sum can be calculated using

dynamic programming [93, р. 1-8]. Let be the target sequence of words, then the

neural network can be trained to minimize the CTC function (30):

 (30)

A neural network can be trained with any optimization algorithm that uses a

gradient.

Figure 18 shows a diagram of the CTC model, where the encoder can be a

DNN, LSTM, BLSTM, CNN or any other kind of neural networks. In [93, р. 1-8], a

CTC forward-backward algorithm is proposed, which uses a dynamic programming

algorithm similar to the forward-backward algorithm for HMM [97, p. 281]. The

main idea of this algorithm is that the sum over all alignments is split into the sum

over the alignments corresponding to the prefixes of their output sequences. This sum

can be efficiently computed using recursive direct and inverse variables.

43

Figure 18 – ASR system with CTC

As for CTC decoding, two options for decoding integral CTC models were

presented in [93, c. 1-8]. The first method is based on the assumption that the most

likely alignment matches the most likely output sequence (31):

 (31)

where . Calculating the best alignment is a simple task, because

 is the concatenation of the most "active" outputs at each time step. However, this

does not guarantee finding the most probable sequence of words.

The second method (the method of finding prefixes) is based on the fact that by

modifying the forward-backward algorithm described above, one can efficiently

calculate the probabilities of successive extensions of output sequence prefixes.

2.5.2 Attention Mechanism

Encoder-decoder models are often used for problems where the lengths of the

input and output sequences are variable [55; 116]. The Encoder is a neural network

that transforms the input into some intermediate representation

 . The decoder is usually an RNN that uses this intermediate

representation to generate output sequences. The encoder can be any neural network,

for example: DNN, LSTM, BLSTM, CNN. Figure 19 shows a diagram of the model.

44

Figure 19 – Encoder-decoder ASR system

In , it was proposed to use an Attention-based Recurrent Sequence Generator

(ARSG) as a decoder. It is a recurrent neural network that stochastically generates an

output sequence on the base of input . The ARSG consists of the RNN and

a subnet called the attention-mechanism. The attention mechanism selects a

subsequence of the input sequence, which is then used to update the hidden states of

the RNN and to predict the next output value. In the -th step, recurrent sequence

generator generates output , focusing on certain elements of (32)-(34):

 (32)

 (33)

 (34)

where is the i-1-th state of the RNN, which is called Generator, is attention

weights (another name is alignment). sometimes called “glimpse”. Step is finished

by recurrently (usually recurrent function if LSTM or GRU) calculating the new state

for the generator (35):

 (35)

Scheme of attention mechanism is given in Figure 20.

45

Figure 20 – Integral model with attention-based mechanism

In [117, p. 579], it was proposed to divide attention mechanisms into three

types: location-based, content-based and a hybrid. Hybrid is the most general type. If

Attend does not depend on , then this is an content-based attention mechanism .

Attention can be thought of as a normalized sum of the metrics of each h element (36

), (37):

 (36)

 (37)

The main limitation of such a scheme is that the same or very similar elements

of h are considered the as the same, regardless of their positions in the sequence,

which in speech recognition has significant importance. This problem is called "the

problem of similar fragments of speech". Often this problem is partially solved by an

encoder, such as Bi-LSTM or deep CNNs, which encrypt the context information into

h elements. However, the sizes of h and their elements are always limited, which does

not fully solve this problem.

For example, the location-based attention mechanism calculates alignment

using the state of the generator and the previous alignment: .

46

This type of attention mechanism predicts the distance between successive phonemes

or symbols only by , which can be difficult due to the large variance of this

distance.

The hybrid attention mechanism uses the previous alignment to select the

short subsequence h, according to which the content attention mechanism will select

the most relevant elements without the problem of similar fragments of speech.

2.5.3 Self-attention

 is attention-based vector representation of a word. Self-attention

mechanism means the calculation of this vector for each word in a

sentence(). Here, representation of each word is computed in parallel

depending on the relations of a word to another word in a sentence (Figure 21). For

example vector will be calculated for the word “Дубайға”. Of course, there could

be used word embedding, but depending on the context the word “Дубайға” can be

considered as historical place or the destination for holiday. In order to understand

the context and choose appropriate representation for the considered word, the

surrounding words would be looked up.

Figure 21 – Attention calculation for each word related to other words in a sentence

Vector A of the transformer attention is described in (38). This attention type

includes softmax in its divisor as well as RNN attention (39):

 (38)

 (39)

Before calculating attention, we firstly associate each word with three vectors:

 . Here is query, is key and is value. These vectors

are found using the following matrices: . These matrices are learned

parameters of the algorithm and they allow to pull-up query, key and value vectors

for each word (40):

 (40)

47

where is word embedding for the word . After getting: vector it

is necessary to take four values marked in white blue figures in Figure 22 in order to

figure out more relevant representation and compute the softmax over them. For

example the value corresponding to word “жазда” can have the largest

value. Further taken softmax values will be multiplied with values. Finally these

multiplications will be summed up and will give .

Figure 22 – Softmax calculation for inner products of query and key values

2.5.4 Multi-head attention

It's not easy to get dot product attention to work: bad initialization with random

values can destabilize the learning process. This is handled by simultaneously

calculating attention with several attention heads at once and concatenating the

results, here each head has its own learning weights (41), (42):

 (41)

 (42)

where , are trainable weights of -th attention head, and -is projection

which helps dimensions
 ,

 to match all layers. In essence, multiple "heads"

allow the attention mechanism to "make multiple bids at once", allowing you to look

at different transformations or aspects of features from the previous layer.

48

2.5.5 ASR architectures based on attention mechanism

2.5.5.1 Transformer

Content based global relations in sequences can be captured by transformer

models [24, p. 5036]. Transformers are mainly based on the attention mechanism

which is firstly mentioned in . Transformers were originally developed for machine

translation and have gradually replaced RNNs in mainstream NLP tasks. The

architecture has a fresh approach to learning representations: completely getting rid

of recurrence, transformers for each word build features using the attention

mechanism to determine the importance of all other words in the sentence for this

word. Thus, the constructed features for a given word are simply the sum of linear

transformations of the features of all words, weighted by this "importance".The

described architecture in formal language looks like this way: so, is the hidden

representation of the -th word in the sentence - from layer to layer is

updated like this (43):

 (43)

where (444):

(4)

where is a set of words in a sentence, trainable linear

weights(abbreviated from Query, Key, Value). The attention mechanism is computed

in parallel for each word in a sentence to get their updated features at once. It is the

advantage of the transformer architecture over RNN which updates features word by

word. The mechanism of attention is easier to understand from of steps from

Figure 23:

49

Figure 23 – Attention mechanism in Transformers

In Figure 23, features for a given word
 and all other words from a sentence

 , will be calculated attention weights for each pair as a scalar

product. Afterwards this will be applied softmax-function through all j. At exit

updated features
 for the word will be taken summing up by all

 weighted by

corresponding . Each word of the sentence concurrently passes the same chain of

calculations.

The key problem, due to which the architecture of transformers looks like as it

is: the values of the features for each word after applying the attention mechanism

can be very different in magnitude. First problem may appear due to too "sharp

peaks" or, on the contrary, uniformity in the attention distribution . Second

problem is that when we concatenate the outputs of several heads for each word, and

they can also be very different in “scale”. Therefore, in the final vector
 the

value spread can be large. According to the practices accepted in machine learning,

here it makes sense to add a normalization layer to the calculation chain.

Second problem is solved by transformers using LayerNorm, which normalizes

and learns the affine transformation at the feature level. In addition, dividing the

attention dot product by the square root of the dimension helps to hold the first

problem.

Final trick to deal with the problem of scaling: the values at each position are

transformed by a two-layer perceptron with a special structure. After applying multi-

head attention, they project
 into an absurdly high dimensionality using trainable

weights, afterwards they are transformed with a non-linear ReLU activation function,

and then values are projected into the original dimension, to further pass an another

normalization (45):

50

 (45)

here LN means Layer Normalization, MLP stands for Multi-Layer Perceptron. Final

structure of Transformer architecture is given in Figure 24. These layers made

"Transformer" architecture deeper, and this allows the NLP community to increase

both the number of parameters and the size of the datasets. Residual connections

between the inputs and outputs of each "sublayer" of multi-headed attention and fully

connected "sublayer" are the key detail that allows you to stack the layers of the

transformer on top of each other.

Figure 24 – Transformer with Layer Normalization and Multilayer Perceptron

2.5.5.2 Conformer

The conformer architecture is effective in many speech processing tasks. It has

advantages of convolutions and attention mechanisms. Convolution is good for short-

term local dependencies, while self-attention is good for capturing long-term

dependencies [24, p. 5036; 120]. The reason of these specific abilities can be

described next way: the transformer using the self-attention mechanism captures the

global context well, but does not extract local features very well. Convolutional

neural networks, on the other hand, use local features efficiently, but require a large

number of layers to capture the global context. A conformer combines convolutional

layers with a self-attention mechanism.

First, the data supplied to the input of the Conformer is augmented. The

SpecAugment method is used for speech recognition. SpecAugment applies three

types of deformations to the Mel-spectrogram: time distortion (lengthening or

compression of a certain interval of the record), removal of a certain time interval

51

from the record, and removal of a certain frequency interval. Thus, when training on

noisy data using SpecAugment, the network is trained on features that are resistant to

time deformation, partial loss of frequency information, and loss of small segments of

speech. The conformer processes the final augmented inputs with a convolutional

neural network consisting of a pooling layer, a fully connected layer, and a dropout,

and then with a sequence of Conformer blocks.

Conformer blocks are a sequence of two macaron-like feed forward modules

[120, p. 17629], between which there is a Multi-Head Self Attention module and a

convolutional module, followed by normalization layer (Figure 25).

Figure 25 – Architecture of Conformer encoder

Mathematical description of Figure 25 looks like as follows (46):

 (46)

here is the input, is the output of -th Conformer block.

52

2.5.5.3 Branchformer

This architecture was proposed in 2022 in the study [120, p. 17629]. Here

authors state out limitations of Conformer encoder, like combining self-attention and

convolution sequentially. After looking for questions dedicated to relationships in

different layers of Conformer encoder, and importance of initial layer operations

authors proposed Branchformer architecture calling it flexible and customizable. This

type of encoder architecture has two branches one of which uses self-attention to

capture long-term dependencies and another one that uses gated Multi-layer

Perceptron (gMLP) for processing local relations (Figure 26). Two branches run in

parallel.

Figure 26 – Branchformer architecture

Outputs of two branches are concatenated. This concatenation also can be

replaced by weighted average in order to make it interpretable where local and global

relationships of context were used in layers. Concatenation can be performed along

the dimension of features and the result can be projected to original dimension again

(47):

 (47)

where is trainable matrix, output sequences of attention branch

and gMLP branch respectively. Despite the effectiveness of merging by

concatenation, it is not easy to modify. As a result Branchformer authors proposed

weighted average method. This approach firstly summarizes the output sequence

from each branch with attention-based pooling method (48):

53

 (48)

Further in order to get weights of branches, these vectors are projected to some

scalars and modified to normal case by softmax function (49):

 (49)

here are linear transforms. Finally weighted average captures all of

local and global connections and looks like this (50):

 (50)

To Branchformer can be applied branch dropout, which means the dropping of

an entire branch for attention mechanism.

54

3 EXPERIMENTS AND RESULTS

3.1 Data collection

3.1.1 Introduction

Improving automatic speech recognition for low-resource languages is one of

the most urgent problems of today. The Kazakh language belongs to the group of

agglutinative Turkic languages with few resources. In general, all the languages

which belong to the Turkic language family are representatives of the group of

agglutinative languages, and almost all of them are representatives of languages with

few resources [8, p. 84]. Due to the lack of information in the form of audio-text pairs

for these languages, they are called low-resource languages. For example, one of the

largest publicly available corpora is the Open-Source Uzbek Speech Corpus of the

Uzbek language, which is only 105 hours long and has 258 hours of Uzbek language

data collected as part of Mozilla's Common Voice project. Common Voice is

Mozilla's project, where collected and made available to the public audio-text

information of the world's languages. Any volunteer can participate in the

development of this project. For the Kazakh language, ISAAI has a corpus of 1,200

hours consisting of 600,000 sentences . Information about most of other Turkic

languages can be found only in Common Voice.

There are several research works on speech recognition of the Kazakh

language. For example, some works have improved speech recognition by using well-

known recurrent neural networks and some by using the architecture with single

hybrid neural systems [38, p. 263]. If one paper considered the improvement the

automatic speech recognition for the Kazakh language by conducting transfer

learning over the model of the Russian language [40, p. 5884], another paper

developed mutual transfer teaching of the Kazakh and Azerbaijani languages, which

belong to the group of related languages [8, p. 84]. In another work, the Kazakh

language was trained together with other Turkic languages. All these works have

achieved better results than the previous ones. And it can be observed that the more

information that is taught to everyone, the more accurate the speech recognition will

be.

Due to the fact that the tuning the hyperpameters for transfer learning method

is complicated, and the fact that combined language training basically improves an

acoustic model, the probability of error in identifying speech in a specific language

for short contexts is high, the relevance of collecting "Clean" information for specific

languages has not disappeared. Therefore, within the framework of this research

work, the work of enlarging the corpus of the Kazakh language was also carried out.

3.1.2 Methodology: raw data collection, combining the collected data into

single corpus and data normalization

For the development of reliable automatic speech recognition system, it is very

important to have a sufficient amount of transcribed data, as in all other areas of

machine learning. At this stage of the research, it was very important to combine the

collected data for all periods into one large corpus for further ASR, which could be

55

used in practical applications. Therefore, it was decided to combine the following

data sets:

1. 283 hours of data, previously collected in the laboratory of the Institute of

Information and Computing Technologies.

2. Data collected for the 2022 year and marked in the laboratory of the

Institute of Information and Computing Technologies. This audio data contains phone

conversations, audio recordings of zoom meetings, news channels: 195 hr 11 min 25

sec (It was expected that in the end we would have 478 hours of data, but after

removing duplicates, only 407 hours remained. It is very important to exclude

duplicates in order to preserve the quality of the resulting ASR model).

3. Writing a script for collecting data with different encodings into one file

with UTF-8 encoding(UTF-8, UTF-16, rk1048).

195 hours of prerecorded phone dialogues and audio files of zoom meetings

specially collected for researches, were collected and further processed for

comprehensive improvement of speech recognition in the Kazakh language. During

the processing of telephone dialogues, audio files were separated from two-channel

audio into two separate channels using ffmpeg software, and the audio information of

each channel was recorded in a separate file (Figure 27). Audio files were further cut

into short audios of 8 seconds duration. These audio files were further used for text

annotation.

Figure 27 – Split two-channel audio-recordings into single channels

The script for editing audio files was written in C++. However, these script

lines can also be used in other programming languages.

1. Script line for dividing files into channels:

str += string("ffmpeg -i ") + filename + " -map_channel 0.0.0 " + left + " -

map_channel 0.0.1 " + right +" -report";

2. Script line for cutting files into 8 second files:

lstr="ffmpeg -i "+left+ " -f segment -segment_time 8

"+trunk_path+ltmp+"%03d.wav";

3. Script line for changing the frequency of files:

str += string("ffmpeg -i ") + filename + " -ar 16000 " + out;

The most effort and time in data collection was needed to process the data,

collected in 2022: as the markup was done on different operating systems the human

factor was unavoidable. The data contained encoding UTF-8, UTF-16, rk1048), and

this required the development of an algorithm which is able to collect the data into

56

one file using only one script. Python was choosen as the language for writing the

script, as this language throws an exception by default, in the process of all other

encodings, except UTF-8. Next, all files that were thrown out to the exception

processing block, depending on the presence of bytes b’\xef\xbb’, b’\xff\xfe’,

were decoded into strings with UTF-8, UTF-16 or rk1048 encoding. The encoding

type selection algorithm depending on the availability of one or another byte is shown

in Figure 28. The complete program code is given in (APPENDIX C).

Figure 28 – Encoding selection for files that were thrown into an exception after

attempting direct decoding with UTF-8

Next step was dedicated to the normalization of data, collected to one large text

file: removal of numbers, punctuation marks, extra, special and invisible symbols. As

the comparison of one symbol to a long speech leads to force alignment all numbers

were rewritten to text format. Also all letters were converted to lowercase, because of

the reason that, ASCII code of uppercase and lowercase letters and having different

cases will have impact on the performance of ASR. The same reason served as a base

for clearing the text from punctuation marks.

ASR training tools like Kaldi and ASR throw exceptions for special and

invisible symbols. In order to make the collected corpus trainable on different tools,

the symbols, like '\u200c', '\u0x00' and etc. were removed from transcripts. The script

for removing these symbols is given in Figure 2929.

57

Figure 29 – Script for removing invisible symbols from a text

After combining and processing all the necessary data, the validity of the data

was checked by training the ASR on ESPNet. ESPNet was selected as a tool for

obtaining an integrated model. An architecture using a conformer encoder and a

transformer decoder was chosen. The input audio information is processed by CNNs,

Bi-LSTM neural system is used to obtain hidden layers in the encoder. The decoder

improves the attention mechanism by fixing connection class coefficients, and

additionally calculates the weight of the language model with a coefficient of 0.3

during decoding. As experiment held only with the purpose to check trainability of

the data, other parameters of neural network weren’t analyzed.

The obtained model showed that the quality of the collected data is suitable for

ML training dedicated to automatic speech recognition. Even if the model parameters

were not carefully chosen, the accuracy of the model was obtained within reasonable

values (Table 5).

Table 5 – Performance of test ASR trained on collected audio-text data

Dataset types WER (%) CER (%)

Train 20.4 8.2

Test 22.4 9.3

3.1.3 Use of trained ASR model

The ability of the trained ASR model was presented by a Telegram bot. User

sends audio messages to the bot and received the answer as a transcribed text form of

sent audio file. Source code of Telebot is given in (APPENDIX D) and its interface in

Figure 30.

58

Figure 30 – Interface of Telebot, implemented using trained ASR

3.1.4 Conclusion

Constructing the model needed to build a speech recognition system, like any

other type of machine learning, requires an adequate dataset. But processing the

information collected in the real environment in the form of audio-text and making it

usable is one of the most complex types of information collection. The 195-hour

59

marked database collected and edited by the authors in more than 1 year is suitable

material for use in experiments for the purpose of creating speech recognition

systems in the Kazakh language, and currently for expanding other databases. After

removing duplicates and merging the collected database with 283 hours of previously

collected data the total volume of data reached 396 hours. This is evidenced by the

results of experiments conducted for the purpose of testing the database.

3.2 Multilingual training experiments

3.2.1 Introduction

Kazakh language is a low-resource agglutinative language from the Turkic

family languages which belong to agglutinative languages. Moreover, almost all

these languages suffer from data shortages [8, p. 84]. Data scarcity for these

languages is found in the presence of less-transcribed audio. For example, the largest

open-source corpus, which is an Open-Source Uzbek Speech Corpus, has only 105

hours. There were 258 recorded hours and 97 validated hours in Uzbek in Common

Voice. Common Voice is a Mozilla’s project for collecting open-source datasets of

transcribed audio data for all possible languages in the world. Anyone can participate

in improving this resource. ISAAI’s Kazakh language corpus contains 335 hours of

transcribed audio (two hours in Common Voice). Some agglutinative languages only

have corpuses in the Common Voice.

Inspired by the results presented in some papers [125, 126] we decided to use a

multilingual model using datasets of several agglutinative languages because

multilingual models demonstrate stable gains over monolingual models [8, p. 86].

Therefore, it is supposed that the multilingual model taken for the group of

agglutinative languages can decrease Character Error Rate (CER) and Word Error

Rate (WER) for distinct languages included in the experiments. Moreover, it is

assumed that the model can be used as a base for providing transfer learning for

distinct groups of languages.

Experiments provided on 11 languages from the Roman family give better

results on Multilingual Deep Neural Networks (DNN) compared to monolinguals .

Transfer learning conducted using the English language model significantly improved

the CER for 12 languages (some agglutinative languages) [126, p. 4221]. The reason

for this hypothesis is that agglutinative languages have common characteristics

including linguistic structure, agglutinative morphology, and vowel harmony .

Furthermore, attempts to use a language model of the Russian language to Kazakh

[40, p. 5884] resulted in unsatisfactory Error Rates because word formations of these

languages are different [8, p. 86].

According to previous research, it was decided to train a multilingual model for

languages from the Turkic family using the Cyrillic alphabet. The reason for

choosing such a method is that the similarity of the alphabet can lead to better

compatibility among language words that have common roots.

Most of existing combining methods of datasets of different languages does not

take into account relations of languages to each other. The basic idea of this research

is to study the impact of combining languages from Turkic language family, with

60

similar scripts. Common word and sentence formation rules of the selected languages

with similar scripts allow to get a working model for each of languages included in

the experiments. The contributions of this research are:

1. ASR development method for critically low-resource languages.

2. Improving ASR performance for languages from one language family.

Further subsections present a review of relevant work found in the literature,

describe the datasets and the methods used in this study, present the main results of

the study, contain a discussion of the results and a comparison with state-of-the-art

methods. The last subsection draws conclusions and proposes directions for future

work.

3.2.2 Related Work

Pooling resources from different languages is helpful for low-resource

languages [127, p. 8622; 129-132].The same idea can also be applied to distinct

language families. Investigations on combining experiments, such as Transfer and

Multilingual training on agglutinative languages, and improvements in WER and

CER were mentioned in [8, p. 86; 133]. Applications of ESPNet and its benefits for

languages of this family can be found in [30; 133, p. 454]. ESPNet is a deep neural

network-based automatic speech recognition toolkit that was proposed in 2018 .

ESPNet’s conformer encoder and transformer decoder, which are used for low-

resource languages, obtained an improvement of more than 15% [135, 136]. The

application of the conformer encoder in the multilingual end-to-end (E2E) model

yielded better results than the others [131, p. 1-4].

Suggestions for further use of multilingual models as a basis for transfer

learning could be justified by the results of . A multilingual deep neural network

(DNN) and a matrix factorization algorithm were used to extract high-level features.

In the second stage, the authors applied a joint CTC-attention mechanism with

shallow Recurrent Neural Networks (RNNs) for high-level features extracted at

previous levels. The authors state that the proposed architecture is the best among all

the existing end-to-end transfer models. The use of a multilingual model in , built on

a collection of adversarial languages for further providing transfer learning for

absolutely different languages, shows improvement by decreasing WER up to 10.1%.

This study uses the IARPA Babel. IARPA Babel is a program aimed at improving

automatic speech recognition in a large number of different languages 1. Using

subword units in a CTC-attention-based system on the LibriSpeech 1000h dataset

obtained an improvement over a character-based hybrid system, reducing the WER to

12.8% without a language model . Moreover, the authors stated that using subwords

helps to avoid out-of-vocabulary problems. This can be assessed as a reason for

choosing languages from one language family because a large part of the words from

these languages have common roots.

Another successful example of using end-to-end ASR for agglutinative

languages can be found in . In this study, experiments were conducted using a

conformer model and CTC-Attention on data augmentation, noise injection, and

exponential moving average. For the Corpus of Spontaneous Japanese, the authors

61

achieved a state-of-the-art CER of 3.2%. The paragraphs above summarize

information about previous works on Turkic languages and the reasonability of the

models and network chosen for the experiments in this study.

Experiments in [126, p. 4218] were conducted using Mozilla’s Deep Speech

v0.3.0 . A total of 26 h of data for Tatar and 10 h of data for Turkish were used to

train the ASR model for these languages over the English language model. The CER

for Tatar was 26.42%, whereas that for Turkish was 27.52%.

A Deep Neural Network with Hidden Markov Model (DNN-HMM) system

was applied to Turkish, one of the most popular and widely used Turkic languages.

The dataset consisted of 6.1 hours of data, collected from mobile devices. In

comparison with GMM-HMM systems, the authors obtained a WER of

approximately 2.5 in comparison with the GMM-HMM systems.

The authors of [31, p. 634-1] investigated questions of speech recognition in

emergency call centers for the Azerbaijan language. In the experiments, two types of

datasets were used: dialogue dataset (27 h) and summary dataset (57 h). The GMM-

HMM and DNN-HMM were applied to train the acoustic model. The authors found

that the DNN-HMM showed better results in the experiments, and the trigram

language model gave no risk of overfitting.

In [37, p. 8337-1], the authors considered a transformer architecture with self-

attention components that can shorten the training process by parallelizing the

processes for the recognition of speech in the Kazakh language. Application of the

Transformer + CTC LM model decreased the CER and WER to 3.7% and 8.3%,

respectively, for 200 h of read speech.

The hybrid model used in [63, p. 48720] comprised a CTC with an attention

mechanism for 400 h of data. The results were as follows: CER = 9.8% and WER =

15.3%. Including Language Model (LM) in this composition led to a significant

decrease in the CER and WER (5.8%, 12.2%).

The end-to-end conformer model in for the Uzbek language for 105 h of data

volume gave more effective results over E2E+LSTM and E2E+Transformer for

Uzbek language from the Turkic family. The end-to-end conformer model showed

lower error rates (CER=5.8%, WER=17.4%) when the Language Model was

included in the decoder.

In [8, p. 84], an attempt was made to fit a model trained on the Kazakh

language dataset to the Azaerbaijani dataset. In this experiment, the (NMF) algorithm

was used to extract features from the audio data. NMF is necessary to reduce hidden

level outputs and decrease redundant values from high-level vectors [137, p. 18-1].

Furthermore, these characteristics were trained on the attention mechanism of the

joint CTC. This approach gave Phoneme Error Rate (PER) equal to 14.23%.

Authors of [133, p. 448-158] study single E2E Automatic Speech Recognition

(ASR) using the ESPNet toolkit for the commonly used languages in Kazakhstan:

Kazakh (KZ), English (EN), and Russian (RU). The combined dataset of the three

languages has a total volume of 975.6 hours. To solve the issue of grapheme

compatibility, the authors also combined the grapheme sets of all languages. The

training results showed an average WER of 20.5%.

62

Table 6 – Summary of different models and approaches applied for agglutinative

languages

Model Language CER (%) WER (%) Volume of data (hours)

CTC and attention Kazakh 9.8 15.3 400

CTC and attention + LM Kazakh 5.8 12.2 400

Transformer and CTC +

LM

Kazakh (Read

speech)
3.7 8.3 200

Transformer and CTC +

LM

Kazakh

(Conversational

telephone

speech)

9.6 15.8 200

E2E-Conformer Uzbek 7.5 21.2 105

E2E-Conformer+LM Uzbek 5.8 17.4 105

Transformer architecture

Combined data

of Kazakh,

English and

Russian

languages

n.a. 20.5 975.6

Transfer learning over

English ASR model on

DeepSpeech (A six-layer

unidirectional CTC

model, with one LSTM

layer)

Tatar 26.42 n.a. 26

Transfer learning over

English ASR model on

DeepSpeech (A six-layer

unidirectional CTC

model, with one LSTM

layer)

Turkish 27.55 n.a. 10

Table 6 shows a summary of the comparative results of different models for

different volumes of data for the Kazakh and all mentioned Turkic languages. The

Table 6 compares the CER and WER achieved using the different models and dataset

sizes.

3.2.3 Materials and Methods

3.2.3.1 Datasets

Almost all Turkic languages have common rules of word formation, and words

can have the same meaning in these languages. Table 7 shows some examples of

phrases formed using words with similar soundings and meanings for the Azeri and

Kazakh languages, which belong to the Turkic language family.

63

Table 7 – Comparative table of expressions with the same meaning in Kazakh,

Kyrgyz and Azerbaijan languages

Kazakh Kyrgyz Azerbaijani English meaning

бір алма [biyr alma]
бир алма

[bir alma]
bir alma [bir alma] one apple

терең көл [tereng kyol]
терең көл [tereng

kyol]
dərin göl [daerin qyol] deep lake

ақ доп [aaq dop] ак топ [aaq top] ağ top [aack top] white ball

қара қой [qara qoy] кара кой [kara koy] qara qoyun [qara qoyun] black sheep

To make the experiment reproducible, data from the open-source dataset

Common Voice was used in the present work. Another reason for choosing this open-

source resource is that the dataset for the Kazakh language is only one hour long.

This allows us to observe the effect of a multilingual approach on critically low-

resource languages. When the experiments of the current investigation began,

Mozilla’s Common Voice Corpus 8.0 [126, p. 4219] was the latest available.

Languages with Cyrillic scripts were chosen from the dataset: Kazakh (1 h),

Bashkir (265 h), Kyrgyz (44 h), Tatar (29 h), and Saha (6 h). The datasets mentioned

contain a wide range of speaker ages for both males and females, as shown in

Table 8 and Table 9. For some languages, there are no samples of older

speakers, and in the case of Tatar, there are no samples of speakers less than 19 years

of age. Male speakers were predominant in terms of gender, with the exception of

Bashkir.

Table 8 – Distribution of the data used – number of speakers, by age

Languages Total hours (validated)
Ages (%)

<19 19-29 30-39 40-49 50-59 60-69

Tatar 29 5 73 1

Kazakh 1 6 26 3 11

Sakha

(Yakut)
6 11 2 44 7

Bashkir 265 (255) 4 17 17 6 5 20

Kyrgyz 6.5 19 67 8 1

Table 9 – Distribution of the data used – number of speakers, by gender

Languages
Gender

Male Female

Tatar 79 2

Kazakh 42 3

Sakha (Yakut) 54 10

Bashkir 30 40

Kyrgyz 54 36

64

3.2.3.2 Speech Recognition Models

Our experiments included five agglutinative languages with Cyrillic scripts:

Bashkir (ba), Kazakh (kk), Kyrgyz (ky), Sakha (sah), and Tatar (tt), with the next

grapheme set . The grapheme set is understood using

letters of the languages. Examples of grapheme letters in the five languages are listed

in Table 10. Bold and red letters indicate specific letters for distinct languages.

Table 10 – Graphemes for Turkic languages with Cyrillic alphabet, included in the

experiments

ba ky sah kk tt All

1 2 3 4 5 6

а а а а а а

ə

ə ə ə

б б б б б б

в в в

в в

г г г г г г

ғ

ғ

ғ

ҕ

ҕ

д д д д д д

е е е е е е

ё ё

ё ё

ж ж ж ж ж ж

җ җ

ҙ

ҙ

з з з з з з

и и и и и и

і

і

й й й й й й

к к к к к к

ҡ

ҡ

қ

қ

л л л л л л

м м м м м м

н н н н н н

ӊ

ӊ

ҥ

ҥ

ң ң

ң ң ң

о о о о о о

ө ө ө ө ө ө

п п п п п п

р р р р р р

с с с с с с

ҫ

ҫ

65

Table continuation 10

1 2 3 4 5 6

т т т т т т

у у у у у у

ү ү ү ү ү ү

ұ

ұ

ф ф ф

ф ф

х х х х х х

һ

һ

һ һ

ц ц ц

ц ц

ч ч ч

ч ч

ш ш ш ш ш ш

щ щ щ щ щ щ

ъ

ъ ъ

ы ы ы ы ы

ь ь

ь ь

э э

э э

ю ю ю ю ю

я я я я

The training sets for each language are defined as a pair for language .
Therefore, the datasets are defined as follows (51):

 (51)

where is an input given as acoustic features, is the corresponding output or

target sequence of characters. The training and grapheme datasets for the multilingual

language model were combined from the data for distinct languages according to

[133, p. 451].

The multilingual dataset is defined as the union of five datasets of languages (

52):

 (52)

The multilingual grapheme set is the union of five grapheme sets from different

languages (53):

 (53)

For languages with critically low-transcribed data, it is possible to miss some

letters and sounds in the dataset. The chosen approach of combining the data of

languages with common scripts and language families can close the gap of absence.

For example, in Table 10, formed on the basis of letters from datasets, letters ‘в [vae],

66

‘ё [io], and ‘ф’ [fae] are absent for the Kazakh language. However, these letters exist

in the Kazakh alphabet and are often used in words from other languages. In addition,

some examples of common letters for all languages included in the experiment

(Bashkir, Kazakh, Kyrgyz, Saha, and Tatar) and common letters for only some of

them (e.g., between Tatar and Kazakh) are presented in Figure 31. It is important to

note that the soundings of these letters are similar in all these languages. This implies

that the proposed multilingual approach can help improve the ASR model for

critically low-resource languages.

Figure 31 – Example of common letters for some of the languages included in the

experiments

For training all E2E ASR models were used conformer encoder and

transformer decoders. Connectionist Temporal Classification (CTC) and attention

mechanisms were used in both stages of training: encoding and decoding. The

weights of CTC and Attention in the hybrid model were given by the hyperparameter

ctc weight. This parameter was left in its default value: ,

because in , it was proved that this proportion is the best among other values. The

weight of the attention mechanism is according to (54).

 (54)

where is the coefficient that controls the weights of the CTC and attention

mechanism [125, p. 521]. This coefficient is also used in decoding, considering the

weights of model (55):

 (55)

67

In (55), is a score used in the beam search [125, p. 522]. Probabilities are

applicable to each output character.

Figure 32 shows the architecture of the system used for training the

multilingual model. The procedure for training ASR was the same as for Common

Voice datasets, except for the feature type: feats type parameter. This parameter was

set to fbank_pitch because in [127, p. 8620], it was found that features extracted by

applying filter bank and pitch methods in training CTC gave better results, decreasing

the CER value. In this study, a deep Convolutional Neural Network (CNN) was

chosen as an encoder function. Here, the main difference from the initial architecture

is the method of combining the input features and the output sequence of

characteristics.

Figure 32 – Network architecture for multilingual model of Turkic languages with

Cyrillic alphabet

3.2.4 Results

3.2.4.1 Monolingual ASR Models

The first monolingual ASR models were trained using the training datasets
 for each distinct language, where }. Speed perturbation

was applied to languages with critically low-resource data. Only the Bashkir

language was trained without speed perturbation. The CER and WER results obtained

for the training and test sets are listed in Table 11. In the initial training, the results

for the Kyrgyz language showed that the CER and WER were lower in the test set

68

than in the training set. Considering this error, duplicates from the Kyrgyz corpus

were removed, and only 6,5 hours of data were kept from 44 h.

Table 11 – Monolingual ASR model results

Languages Details
Total

hours
Uttr-s

Validation set Test set

CER WER CER WER

Tatar s.p.:

0.9,1.0,1.1
29

train: 20204,

val: 2812
4.5 17.0 7.0 22.5

Kazakh s.p.:

0.9,1.0,1.1
1

train: 406,

val: 316
66.3 123.6 67.7 124.2

Sakha

(Yakut)

s.p.:

0.9,1.0,1.1
6

train: 1633, val:

1083
29.2 79.7 32.8 85.5

Bashkir
no s.p.

265

(255)

train: 178522,

val: 14577
1.8 6.4 1.7 6.1

Kyrgyz s.p.:

0.9,1.0,1.1

44(6.5

kept)

train: 4010, val:

502
17.7 54.3 17.9 55.3

3.2.4.2 Multilingual ASR Models

The multilingual ASR model was trained on the basis of the multilingual

dataset with the following overall utterances: train, 227031; test, 20401.

Speed perturbation was not applied to the multilingual ASR model. Test folders of

the distinct languages were used for decoding. Comparing data from Table 1111 and

Table 1212, especially test/WER and test/CER, it is possible to conclude that

multilingual ASR gives very promising results for languages with critically low-

resource data: test/WER for Kazakh language decreases from 124.2 to 64.3, test/CER

decreases from 67.7 to 19.3.

Table 12 – Multilingual ASR model results

Languages
Validation set Test set

CER WER CER WER

ALL: Cyrillic 3.8 11.8

Tatar n.a. n.a. 5.3 19.7

Kazakh n.a. n.a. 19.3 64.3

Sakha (Yakut) n.a. n.a. 18 58

Bashkir n.a. n.a. 1.7 6.4

Kyrgyz n.a. n.a. 3.9 11.4

A comparison graph formed based on Table 1111 and Table 1212 for test/WER

is presented in Figure 33. Here, it is possible to determine that for the language with

maximum hours, Bashkir’s language results of multilingual and monolingual models

are nearly the same. Kyrgyz, Saha and Tatar have also made improvements.

69

Figure 33 – Monolingual ASR model WER comparison with multilingual

The results obtained in this study show significant differences in comparison

with the results of [126, p. 4221]. Transfer learning results for languages from the

Turkic family over the English language model, especially for the Tatar language,

showed a higher CER than in our investigation (26.42%). In our experiments, the

CER was higher in the multilingual model (5.3) than in the monolingual model (4.5)

for Tatar. However, the use of languages of one family and one type of scripting,

moreover, according to the advantages of the chosen training system, resulted in one-

fifth less CER than in the result reported in the state of the art.

The results of [125, p. 524], obtained by training languages from different

language groups, provided improvements for all languages included in the

experiment. But there is no dramatic improvement as in the current study: in our

investigation ASR gives very promising results for languages with critically low-

resource data: test set WER for Kazakh language decreases from 124.2 to 64.3, test

set CER decreases from 67.7 to 19.3.

The results of this work prove that multilingual training with CTC + Attention

mechanisms, including language models, can help obtain meaningful results for

languages with critically low-level data if we train languages of one family and have

similar alphabets.

3.2.5 Conclusion

Almost all languages in the Turkic family are low-resource languages. As these

languages have words with similar roots and word formation rules, the proposed

approach can help improve ASR models by providing multilingual training by

combining datasets to train on the ESPNet system with CTC + Attention mechanism

+ LM. To maintain robustness, languages with similar letters (Cyrillic) were chosen

for the study and experiment. The results showed that the ASR system chosen and the

data combining approach can provide better results than the state-of-the-art system.

This approach can also help solve the challenge of letter absence in critically low-

70

resource languages. The proposed method can be applied to languages of other

families, but different letters can lead to different results.

3.3 Enhanced LM with enlarged raw text data

3.3.1 Introduction

The rich set of parameters which describes words’ relationships and can help to

improve the recognition performance of Automatic Speech Recognition Systems

(ASR). There is a number of researches where distinct language models trained on

enlarged dataset of texts were used in order to improve the performances of ASR

systems [143-146]. One more advantage of this method is the possibility of

decreasing the cost of ASR, due to the fact that collection of raw text is much cheaper

in comparison with text-audio data collection.

The present section is dedicated to the investigation of ASR by using language

model, trained on enlarged text data. There was proposed the method of applying

external language model to the workflow of end-to-end ASR, by using it in decoding

stage. Moreover, the ASR model of big dataset was used as a basic model for transfer

learning, which also had impact on the performance of ASR.

Subsections of this part of the thesis describe related works, methodology used

and provided experiments, discussions and conclusions.

3.3.2 Related works

3.3.2.1 Researches, dedicated to improve ASR for Kazakh Language

Multi-Scale Parallel Convolution (MSPC) was proposed by some authors [35,

p. 7319-2] as the method of ASR improvement in the architecture CTC-attention.

Here authors use this method with bidirectional long short-term memory (Bi-LSTM)

and achieved the performance improvement for end-to-end model. Authors of this

research used data for Turkish and Uzbek languages from Common Voice and

augmented them by adding noises, this allowed them to check the performance and

increase the size of data, to be trained. The result of this study showed that WER and

CER were decreased by using proposed approach in joint use with language model.

Here the increase of beam width to 16 also was one of factors which helped to

improve results.

In authors trained twenty two different languages together in multilingual

training in order to observe the impact of multilingual approach for representators

from one language family. Results of this approach showed that this multilingual

approach decreases error rates for each language. In was proposed the idea of using

external LM, trained on the data collected from different books in Kazakh language,

but authors proposed the idea of only parts of words.

3.3.2.2 Text corpus enhancement for ASR: general case

The use of improved word embeddings was proposed in [143, p. 96] and

authors noticed its usability in speech translation and ASR. The importance of word

embedding vectors in decreasing error rates was studied and proved in [144, p. 8515].

71

Improved vectors of embedded words can decrease WER being used in decoding

process, because they can obtain rare words as improvement of these vectors are

usually provided using large-scale data [145, p. 690]. Authors of [146, p. 366] studied

approaches of translating written text form of human speech into the format which

can serve as a basis for building LM which also can improve ASR performance.

3.3.3 Methodology

Current research studies the impact of distinct language model to the

improvement of ASR characteristics. An enlarged language model was integrated

into decoding stage. This language model was trained on the data which consists of

text data from different resources and the text of paired entire dataset for training the

ASR. General structure of proposed decoder is depicted in Figure 34.

Figure 34 – Improved decoder with the LM of enlarged raw text

3.3.3.1 LM enhancing

As ESPnet supports the state-of-the-art architectures for ASR, like transformer

and conformer, it was choosen as a tool for providing the experiments for this task.

Convolutional Neural Networks (CNNs) were used for processing input signals and

the method of joint decoding (CTC-attention) was applied for output. A Language

Model (LM) was trained [134, p. 3; 135, p. 2] and was integrated in decoding (56):

 (56)

here p is for the next word’s probability, is the word’s probability given as

suggestion found by ASR model, is the probability of next word calculated by

72

extended language model, is the coefficient of language model (, float

value).

Use of additional raw text information can improve hot vectors which are

called E-vectors, because it can obtain different cases of usages of words and their

combinations.

3.3.3.2 Featurized representation

The probability of word’s relation to different classes of features is called

featurized representation. These features can be retrieved extracted by calculating

relations of words into utterances, sentences or phrases. This type of information is

very useful in the tasks of generation sequence, for example in NLP and ASR,

because both of these tasks need the prediction of next token.

Let’s consider, we have this sentence in our data collection:

I like to drink milk.

If the newly trained model is expected to predict the word in a sentence, in the

expression which is not in the trained dataset:

I like to drink ___________?

Which token will be chosen from the table of word representations? It is

expected, that it will pick up word “juice” due to the fact that hot representation of

this word is nearly the same as “milk”s (Table 13). It means, if the model will not

have any information about the “juice”, the probability of predicting it for the

sentence in near to zero. This is the reason for increasing the “knowledge” of models

about sentences, expressions and words.

Table 13 – Featurized representations of some words in Kazakh Language

Features of words
Ана

(mother)

Әке

(father)
Ұл (boy)

Қыз

(girl)

Сүт

(milk)

Шырын

(juice)

Parenthood -1 1 -0.27 0.26 0.00 0.02

School -0.25 0.32 -0.99 0.99 -0.03 0.04

Drink 0.00 0.00 0.02 0.03 0.92 0.93

Wet 0.02 0.03 0.04 0.01 0.94 -0.98

Size 0.05 0.04 0.08 0.09 0.55 0.62

Fruit 0.07 0.08 0.01 -0.02 0.09 0.53

Flower 0.15 0.20 0.09 -0.21 0.08 0.34

3.3.3.3 LM architectures

Enhanced text corpus was trained with the use of two different LM

architectures: sequential RNN model and Transformer language models. Training of

“Big text” by transformer resulted in the lowest perplexity value: 2.99. “Big text”

also gave improvement, when in was trained with sequential RNN in comparison

with training entire text of the used dataset: 3.99 agaist 9.09. (Table 14). This table

also depicts, that the biggest number of trainable parameters was extracted with

transformer LM (50.54 M).

73

Table 14 – Impact of different language models on perplexity

Type of language model Perplexity
Trainable

parameters

Number of

sentences

RNN language model (transcript of basic

dataset)

9.09 6.83 M 5774

RNN language model (enhanced text data) 3.99 6.84 M 139810

Transformer(enhanced text data) 2.99 50.54 M 139810

3.3.3.4 RNN language model

Architectures of language models, tested during this experiment are based on

statistical probability. Application of probability to the sequences of letters and words

was proposed in the 80’s of twentieth century . In this approach the probability of

whole sentence or expression is calculated as the product of each word’s probability

which depends on the previous part of expression.

 (57)

In (57) s stands for sentence, stands for the i-th word. Sentences in Kazakh

language can be very long, that is why RNN LM with LSTM cells was used . This

language model was trained in the architecture with two layers and 650 LSTM units

in each layer. Linear decoder was used with the number of features 650 for input and

48 for output. The batch size was set to 48. Model was trained in 20 epochs.

3.3.3.5 Transformer language model

Transformer is one of the generally used and efficient architectures [136,

p. 5874]. The key mechanism in this architecture is attention weights, which firstly

successfully solved the task of text translation . In this research this type of language

model has embedded type of sequential layers. Dropout for this model is 0.1 and

activation function is rectified linear unit. Each layer of encoder has eight heads and

512 units in each head. After position-wise feed-forward, there was placed two

normalization layers. Dropout is 0.1. Learning rate was chosen as 0.001 and model

was trained in 25.

3.3.4 Description of ASR architecture and the results of training with LM on

“Big text”

ASR uses conformer as an encoder and transformer as a decoder. The layer

used as input layer is convolution layer which is two dimensional. Activation

function for input layers is ReLU. Multi sequential encoder with 12 layers is used.

Relational positioning attention heads are in each layer. Each layer has four attention

heads. This layer is is followed by two layers of position-wise feed-forward and

convolution layers. Activation function of these two different types of layers is

swish. Normalization layers are used after each layer of encoder.

Decoder, which uses transformer architecture has positional encoding in the

embedded layers of input. After these layers there are placed six attention layers with

74

multi heads. Joint decoding uses the loss function CTC with the weight equal to 0.3.

There was chosen sufficiently high value of learning rate which is equal to two, due

to the fact that 15 hours for ASR training is very low.

Language models, tested during this experiment was used jointly with the

decoder of conformer architecture. Results for 15 hours of audio-text Kazakh speech

are given in Table 15. Weight of language model for experiments, listed in Table 15

is 0.3.

Table 15 – Comparison of word error rate and character error rate values for ASR

system trained in different cases for 15 hours of Kazakh language

LM type
WER/val

(%)

WER/test

(%)

CER/val

(%)

CER/test

(%)

Sequential RNN language model with basic

dataset text
53.1 54.0 19.1 20.1

Sequential RNN language model with

enlarged text data
48.7 49.1 18.3 18.9

Transformer language model with enlarged

text data
46.2 46.8 17.7 18.2

TransformerLM with enlarged text data and

cross lingual transfer learning from English

language (encoder)

45.5 46.3 17.3 18.3

After clarifying the fact that language model trained on enlarged text with

transformer model can decrease error rates for ASR, appeared the suggestion that

increase in the value of language model weight can make further improvements in the

performance of ASR. This suggestion is based on the fact that this type of language

model has better representation for words. Empirical experiments on choosing proved

our hypothesis. The lowest error rate achived with the language model weight equal

to 0.45. Values of error for experiments with different values of lm_weight are given

in Table 16.

Table 16 – Effect of different values of lm_weight of ASR performance

Lm_weight WER/train (%) WER/test (%) CER/train (%) CER/test (%)

0.35 43.5 45.6 17.0 17.9

0.4 44 45.1 17.3 18.2

0.45 43.2 43.2 17.2 17.4

0.5 42.7 43.5 16.9 17.8

3.3.5 Discussions and Conclusion

Use of large size of raw text, so called “Big text”, for training external

language model have effect on all types of ASR performance metrics, especially on

word error rate and character error rate. Significant impact of this approach was on

word error rate, but different language models gave different improvements: training

“Big text” with RNN language model decreased word error rate by 5%, transformer

language model by 7.2%. It means that the ability of transformer model to increase

75

the number of trainable parameters makes it more effective and this model can

decrease the perplexity.

The transfer learning for Kazakh language over the model for English language

can improve the results taken by using in the decoding language model by training

“Big text” by transformer architecture. This study allows to conclude that the use of

Enhanced language model in decoding is suitable for Kazakh language. Taken results

also help to conclude, that Transformer model in comparison with RNN model is

more effective, and it decreases word error rate by 10% in the case of choosing

optimal value for language model weight against ASR model, which used in

decoding language model, trained only with the text of entire dataset.

3.4 Transfer learning experiments

3.4.1 Introduction

The performance of ASR systems built by end-to-end methods depends on the

size of data to be used in training process. The study, were the author of this thesis

participated [8, p. 90] proved this idea. Also here stated out that the most

agglutinative languages from Turkic family are low-resource. They are: Azerbaijani,

Kazakh, Kyrgyz, Tatar, Turkish and etc. The larger the data, better the accuracy in

final model. In and were obtained better results for large data by training with CTC

and attention-based end-to-end models. However, introducing the complex of

computational layers can result to huge number of parameters which cannot be

reached by training low-resource languages. In order to avoid parameter leakage

problem for each language the transfer learning method was applied for languages

which belong to one language family: Kazakh and Azerbaijani languages. Here we

also use the advantage of end-to-end models for agglutinative languages which was

proved in , which states the fact that end-to-end models for these languages does not

need the integration of language models.

Transfer learning is the approach which adapts the models which was trained

on one data to another collection of data for training. This research showed next three

improvements:

1. The representations taken in the result of training for one language (Kazakh)

reduces training time for other language against the training from scratch.

2. Transfer learning allow to use less data for another language for evaluation

3. GPU memory usage decreases because transfer learning does not need the

support for gradients of all layers.

3.4.2 Related works

As high-quality transcribed data is not available for languages from Turkic

family, it is necessary to study the ways of improving ASR result parameters for

these languages. There was performed review for transfer learning and combining of

end-to-end methods for speech recognition which served as the bases for current

research.

DNN based end-to-end ASR systems can use the advantages of transfer

learning. In acoustic model was built on the data taken from the phone call records of

76

call center. The model trained with 20 hours of target data over the acoustic model

trained with large corpus from call centers improved the accuracy by 7.8% in

comparison with the model trained only with target data for Turkish language.

Other research proposes another type of transfer learning, called language-

adversarial. This learning type could enable SHL model’s common layers which

allowed to learn the features, invariant for languages. The dataset IARPA BABEL

was used for experiments. The result of this study showed that this approach could

reduce word error rate by 10.1%. In spite the model good performance of the model

the systems got heavier.

The next study [40, p. 5884] used the pretrained model on the 100 hours of

Russian speech taken from VoxForge as a basis for transfer learning. The knowledge,

extracted from the mentioned dataset was used as a basis for 20 hours speech of

Kazakh language. This model used LSTM and BiLSTM NNs. In the case of training

by Bi-LSTM Lemma Error Rate (LER) was reduced to 32%.

Two major types of end-to-end architectures were compared in the next study

for Mandarin speech. Here was chosen the best unit type for recognition and the best

architecture between CTC and attention-based mechanism. As a result, characters of

Chinese language were found as the best unit for recognition and encoder-decoder

mechanism on the basis of attention mechanism (35.2%) showed better performance

over CTC model (35.7%). In the experiments the stage of feature extraction from

input signals was skipped. Attention mechanism also was used for 60 hours of

Russian language in . Here authors tests joint use of attention encoder-decoder with

CTC model on Russian continuous speech and took comparatively better results in

comparison with other approaches.

Effectiveness of hybrid approach also was shown in another study . Jointly use

of LSTM and transformer gave faster output and outperformed the ASR trained by

transformer by 11.9%. The made review shows that combination of end-to-end

methods improves performance of ASR systems, while transfer learning can improve

speech recognition for low-resource language. Both of mentioned approaches were

used in the current study.

3.4.3 Methodology

3.4.3.1 Training by transfer

To avoid the problem of resource leakage the transfer learning method was

applied in end-to-end architecture. The acoustic similarities of Kazakh and

Azerbaijani languages were used from common layers. Feature extraction was

performed from multilingual dataset where Kazakh and Azerbaijani languages were

combined, for embedding acoustic knowledge which are general for two languages.

Firstly, were trained independent RNN layers using hidden layers which are common

for languages included in the experiment. Figure 35 demonstrates the input for hidden

shared layers for transfer learning.

77

Figure 35 – RNN with common hidden layers

Two languages were trained in parallel. The output of each hidden layer for

RNN is presented as dot product:

 (58)

where layer -th output for -th frame is , presents the vector of binary

elements. Vector’s each element stores information about whether corresponding

item was changed or remained. The activation function is maxout function.

Additionally, dropout is applied in training process in order to extract the best

features in common layers and minimize the risk of overfitting. In order to find the

maximum for each layer was performed the max pooling. The maximum was found

next way:

 (59)

where is the number of each hidden layer’s single output, is the vector which

contains these outputs, is the size of pooling is . RNN processes phonemes extracted

by Gaussian Mixture Models (GMM) from low-level acoustic data. All parameters

were moved below the last hidden layer and an additional layer with SoftMax was

added in order to get the features of low-dimension from recurrent neural network.

This adaptation which does not destroy entire structure of NN provides maximum

level of possible nonlinearity for the further calculations.

3.4.3.2 CTC and attention mechanism in joint use

This section contains discussion about end-to-end approach which provides

transfer learning on the previously obtained high-level features. Previous studies of

some authors [38, p. 265] tested the architecture which has one encoder and joint

78

CTC-attention decoder. The already extracted high-level features were trained by

shallow Bi-LSTM encoder and joint decoder. The described architecture is given in

Figure 36 [8, p. 88].

Figure 36 – The architecture with shallow Bi-LSTM encoder and joint CTC-attention

decoder

The distribution of probability over the input, which is given as audio

signals in independent conditions:

 (60)

where is the initial data at time for the symbol which is given as . And

this is calculated for all which mean the input.

The encoder uses Bi-LSTM and location aware attention. Weights of attention

 contains outputs of -th encoder together with the -th decoder. Weights of

previous layer and decoder’s hidden outputs , encoder’s output are used

to find :

 (61)

 (62)

 (63)

 (64)

79

Here means convolutional filter; , , are weight parameters of

multilayer perceptron which can be adjusted, is a context vector. Attention

mechanism’s posterior probability is found as follows:

 (65)

Loss functions for attention mechanism and CTC, for total case are defined

next way:

 (66)

 (67)

 (68)

here serves as a weight for CTC.

3.4.4 Experiments

This section discusses the dataset characteristics, transfer learning experiment,

comparison of transfer approach with baseline methods. Audio files of wav format

were used for experiments with frequency 44.1kHz and bit depth equal to 16 bits. For

Kazakh language 400 hours (200 hours of spontaneous phone conversation, 200

hours of regular speech) and for Azerbaijani language 70 hours of speech were used.

Dev (training) dataset took 80% of the dataset, while 20% was given to test dataset.

The end-to-end models which were built for this experiments had used during

training 32 phonemes for Azerbaijani language and 28 for Kazakh language, which in

sum equal to 60. Total size of dataset to train contained 470 hours of speech signals.

CTC was trained firstly, then attention-based model. CTC model had six-layer Bi-

LSTM, each layer had 256 cells inside. Attention in the encoder is a three-layer

directional Bi-LSTM, the number of cells inside is the same as in CTC layers. The

decoder is LSTM which has 256 cells and only one layer. Dropout values were

chosen as next: encoder - 0.2, attention - 0.5 and decoder 0.1. The algorithm Adam

was used as an optimizer. CTC_weight was presetted as 0.3. The width for beam

search was set to 15. Acoustically similar words of Kazakh and Azerbaijani

languages were not distinguished until epoch 45 during the training process. The

corpus used in training had 71.649 similar words. The model after epoch 45 was

chosen as a final model as it has the best accuracy. The accuracy and loss function

values of the training over epochs are depicted in Figure 37.

80

Figure 37 – The accuracy and the loss values of transfer learning process

The phoneme error rate was used as system’s purpose was to recognize

phonemes and this error rate was calculated using the distance of Levenshtein [158].

The result of the experiment was compared with the results of other studies and it was

determined that the result of the current study outperforms others found in the state of

the art, as shown in Figure 38.

Figure 38 – Transfer learning result in comparison with other studies

3.4.5 Discussion

The last stage of the experiment contains the comparison of obtained model in

the result of transfer learning with other models, built without application of transfer

approach. The model considered model was compared with basic models like DNN-

HMM which were described in [153, p. 397] and . Another end-to-end method with

complex encoders is dedicated to construct a model for presenting the raw data from

input as a sequence of audio or characters [160, 161]. Some of the studies used jointly

81

CTC and attention, which consists of shallow RNNs. In the result of experiments it

was proved that the approach proposed for transfer learning outperformed all

mentioned end-to-end methods: for example, the result obtained with DNN-HMM in

was 31.5%, the result taken with WaveNet in [159, p. 472] was 18.8%, the result with

CTC-LM in [153, p. 397] was 17.9%, end-to-end with the use of transfer for English

and Persian languages was 19.41%. The comparison of the results of the current

study is depicted in

Figure 3838. According to this figure it can be concluded that end-to-end joint

transfer model’s error rate is the least among other similar researches, reaching the

value equal to 14.23%. But the taken result is still cannot reach the accuracy of

human level and is significantly slow for real-time recognition.

3.4.6 Conclusion

The performance characteristics of ASR system critically depends on the

quality and diversity of the datasets used for training. Therefore, speech corpuses

were carefully collected for both of Kazakh and Azerbaijani languages were

collected. Collected speech contains audio data from open sources and phone

conversation speech, which can be determined as spontaneous. In the result, 400

hours of Kazakh speech and 70 hours of Azerbaijani speech were combined.

An end-to-end transfer model was proposed for these languages, in which the

first stage performed feature extraction using NMF algorithm, and the second stage

trains joint CTC-attention model using these features. Transfer learning had two

levels, like bilingual and multitasking. The results of experiments proved that the

model proposed outperforms modern speech recognition approaches. The final

phoneme error rate was 14.23% which is relatively small in comparison with results

of other modern systems.

82

4 DISCUSSION

All types of machine learning tasks need adequate datasets to be trained.

Automatic speech recognition also needs hundreds and thousands of hours of

transcribed data. It is one of the fields which mainly uses ML after the introduction of

end-to-end approaches. But the process of collecting and merging the data, collected

in the real environment, audio-text pair forming and making it usable to train is one

of the most complex tasks. The 396-hour marked database collected and edited by the

author in more than 2 years is a valuable contribution of the author to the

improvement of speech recognition area for Kazakh language. This material can be

used in experiments for the creation of speech recognition systems in the Kazakh

language, and can be used to expand other databases and datasets. After merging 195

hours of speech collected in real time conditions database with 283 hours of

previously collected data, the total volume of data reached 396 hours, after cleaning

and removing duplicates. The experiment, performed with this data by training ASR

on conformer architecture, proves the suitability of this data to use in machine

learning tasks. Besides, the script written for converting data of different encodings

into UTF-8 encoding (UTF-8, UTF-16, rk1048) can be applied in different tasks from

various fields of science.

The results of the study with multilingual training showed that current

experiment outperforms previous studies with these languages. For example, in [126,

р. 4221] the results of transfer learning for Tatar over English character error rate was

26.42%, while in our experiments it showed five times less errors: 5.30%. The results

achieved in [125, p. 524] by training languages from different language groups,

showed improvements for all languages chosen for experimentation. But the results

did not have dramatic improvement as in the current study: the result of a

multilingual experiment with languages from one language family and common

scripts gave promising results for languages which have critically low-resource data:

test set WER for Kazakh language decreases from 124.20 to 64.30, test set CER

decreases from 67.70 to 19.30. The chosen architecture: CTC+attention+LM can also

be applied distinctly to languages of Turkic family.

The language model trained on “Big Text” gives improved and advanced word

representation for speech units (words) of a language. This external language model

is used in the decoding stage. Thereby, inclusion of distinct language models trained

on the big raw text, which is bigger and different from the entire text of the dataset,

can decrease the error rate of the ASR system. Experiments proved that it has a

significant impact on word error rate. Training of so called “Big Text” with

Sequential RNNLM reduced WER by 5%, with transformer language model reduced

by 7.20%. By the results of experiments, it is evident that Transformer LM is

effective in comparison with basic RNNLM model, as it decreased perplexity value

and increased the number of trainable parameters. Moreover, appropriate choice of

language model weight value in decoding can decrease word error rate by 10% for 15

hours of transcribed data.

83

The comparison of the model obtained with transfer learning with other

models, built without application of the transfer approach, proved the efficiency of

our approach for transfer learning. The model considered was compared with basic

models like DNN-HMM, which were described in [153, p. 394] and [159, p. 472].

Another end-to-end method with complex encoders is dedicated to construct a model

for presenting the raw data from input as a sequence of audio or characters [160; 161,

р. 5510]. Some of studies used jointly CTC and attention which consists of shallow

RNNs. In the result of experiments it was proved that the proposed approach for

transfer learning outperformed all mentioned end-to-end methods: for example, the

result obtained with DNN-HMM in [162, p. 4562] was 31.5%, the result taken with

WaveNet in [159, p. 472] was 18.8%, the result with CTC-LM in [153, p. 397] was

17.9%, end-to-end with the use of transfer for English and Persian languages [163,

p. 3] was 19.41%. The comparison of the results of the current study is depicted in

Figure 3838. According to this figure it can be concluded that end-to-end joint

transfer model’s error rate is the least among other similar researches, reaching the

value equal to 14.23%. But the taken result still cannot reach the accuracy of human

level and is significantly slow for real-time recognition.

According to the results discussed above it could be stated out that research

questions listed out in the INTRODUCTION were answered:

1. A relevant architecture was selected for Turkic languages.

2. It was proved that transfer learning is effective for languages from one

language family.

3. It was proved that multilingual training for Turkic languages with common

scripts decreases ASR error rates for each language included in the experiment.

4. Transcribed audio corpus for Kazakh language Enlarged.

5. A language model trained on Transformer architecture with enhanced text

corpus decreases error rates in end-to-end ASR.

6. A new automatic speech recognition model was trained for Kazakh langage

7. The programming product was constructed, which can translate speech to

text.

Results of researches were presented and discussed in different conferences

and seminars and some of them were published. Moreover, the author was awarded

with certificates as a seminar speaker, for the best presentation:

1. O. Mamyrbayev, D. Oralbekova, A. Kydyrbekova, T. Turdalykyzy and A.

Bekarystankyzy, "End-to-End Model Based on RNN-T for Kazakh Speech

Recognition," 3rd International Conference on Computer Communication and the

Internet (ICCCI) (Tokyo, 2021 – 25-27 June).

2. Certificate to the seminar speaker on the topic “Improved Speech

Recognition for Agglutinative languages”, Coimbra Institute of Engineering (ISEC),

(Coimbra, 2023 – 21 April).

3. Certificate for the best presentation speech, “Improve Automatic Speech

Recognition for Kazakh Language using Extended Language Model”, “ACeSYRI

Young Researchers School” (Almaty, 2023 – 5-10 June).

84

4. A. Bekarystankyzy, O. Mamyrbayev, “Improve Automatic Speech

Recognition for Kazakh Language Using Extended Language Model”, 21 scientific

conference, (Riga, 2023 – 20-21 April).

5. Automatic Speech Recognition Improvement for Kazakh Language with

Enhanced Language Model // Recent Challenges in Intelligent Information and

Database systems. ACIIDS 2023. Part of The Communications in Computer and

Information Science book series. – 2023. - Vol. 1, - P.538-545 (Springer, Cham).

Main results of the dissertation research were published in four papers, one of

which is published in a periodical journal with non-zero impact-factor and indexed by

databases Scopus and Web of Science, three papers published in the journals

recommended by the Control Committee in the sphere of education and science of

MHES RK. One of the studies was published as book chapter in LNAI Book series.

Autor’s certificates were taken for scripts and programming products, developed

during research:

1. M. Orken, A. Keylan, O. Dina, B. Akbayan and Z. Bagashar. Identifying

the influence of transfer learning method in developing an end-to-end automatic

speech recognition system with a low data level // Eastern-European Journal of

Enterprise Technologies. – 2022. - Vol. 1, №115. - P. 84-92 //

https://doi.org/10.15587/1729-4061.2022.252801 (Scopus, percentile 34).

2. Bekarystankyzy A. and Mamyrbayev O. Integrated Automatic Speech

Recognition System for Agglutinative Languages // News of the National academy of

sciences of the republic of Kazakhstan. - 2023. - Vol. 1, №345. - P. 37-49 //

https://doi.org/10.32014/2022.2518-1726.167.

3. Bekarystankyzy A., Mamyrbayev O., Oralbekova D., Zhumazhanov B.

Transfer learning for an integrated low-data automatic speech recognition system //

Scientific and technical journal "Bulletin of the Almaty University of Power

Engineering and Telecommunications". - 2023. - Vol. 1, №60. - P. 185-198 //

https://doi.org/10.51775/2790-0886_2023_60_1_185.

4. Bekarystankyzy A. and Mamyrbayev O. End-to-end speech recognition

systems for agglutinative languages // Scientific Journal of Astana IT University. -

2023. - Vol. 13. - P. 86-92 // DOI: 10.37943/13IMII7575.

5. Author’s certificate "Software Product UniCodeKaz" №38545 from

21.08.2023 (Bekarystankyzy A.)

6. Author’s certificate "System of transcribing audio files to text" №38833

from 31.08.2023 (Bekarystankyzy A., Mamyrbayev O., Duisenkhan B.).

85

CONCLUSION

The thesis achieved contributions to the improvement of automatic speech

recognition for agglutinative languages from Turkic family, especially for Kazakh

language. The first step of investigations was dedicated to data collection in order to

enlarge existing datasets of Kazakh language, because training of robust ASR models

needs sufficient amount of data. In the end it was possible to produce a satisfactory

dataset with 396 hours of speech and without duplicates. Moreover, a script was

implemented which can convert the information in Kazakh language from any

encoding to UTF-8.

A second step considered multilingual training of languages from one language

group and which have similar scripts. This approach gave for the language with

critically low resource an improved error rate. Training languages like Bashkir,

Kazakh, Kyrgyz, Tatar and Saha from Commonvoice reduced WER for Kazakh

language to half, decreasing its value for one hour of dataset from 124.2 to 64.3.

A third part of the studies contains a method which can improve ASR

performance without the need of collecting and transcribing audio data. Use of only

raw external text, so called “Big Text” decreased word error rate for 15 hours of

Kazakh speech by 10%.

The last investigation contains the study of transfer learning with Turkic

languages, like Kazakh and Azerbaijani. Here firstly were extracted audio features by

NMF algorithm. Further these features were trained by CTC-attention joint

architecture for 60 phonemes, and the final phoneme error rate was the least in

comparison with other similar studies. To sum up all, it can be concluded that the

thesis studies and make contributions to improve ASR for Turkic languages,

especially for Kazakh language. If first stage considers data collection, all other

experiments and studies are dedicated to improve the ASR performance for low-

resource languages with data pooling methods, like multilingual training and transfer

learning and improving word representations with external text data. The proposed

pooling methods easily can be applied in the situations where only low-resource data

is available. But for some of agglutinative languages from Turkic family even these

approaches can be inadequate, because these methods also requires at least more than

15 hours of transcribed data.

The main contributions of the research were published in three international

conferences, four journal papers and in one book as a chapter. Also, author’s

certificates were taken for scripts and programming products developed under

research.

Future work can be dedicated for the building of specific architectures for

Turkic languages and finding metaparameters for tuning existing architectures for

agglutinative language, more precisely for Kazakh language, because any type of

training for Kazakh language has incorrect accuracy graph due to binding words so

called “shylau” and the similar words which have similar body and different

meanings.

86

REFERENCES

1 Ahmad A., Rizwana I., Jiechao G. et al. E2E-DASR: End-to-end deep

learning-based dysarthric automatic speech recognition // Expert Systems with

Applications. – 2023. – Vol. 222. – P. 119797.

2 Jasper O., Laura T., Bernd T.M. Self-conducted speech audiometry using

automatic speech recognition: Simulation results for listeners with hearing loss //

Computer Speech and Language. – 2023. – Vol. 78. – P. 101447.

3 Ablimit M., Neubig G., Mimura M. et al. Uyghur morpheme-based language

models and ASR // In procced. IEEE 10th internat. conf. on signal processing

proceedings. – Beijing, 2010. – P. 581-584.

4 Frank Z., Yongqiang W., Xiaohui Z. et al. Faster, Simpler and More

Accurate Hybrid ASR Systems Using Wordpieces // Procced. conf. «Interspeech

2020». – Shanghai, 2020. – P. 976-980.

5 Hilal Ö., Emin E.K. Transmorph: a transformer based morphological

disambiguator for Turkish // Turkish Journal of Electrical Engineering and Computer

Sciences. – 2022. – Vol. 30, Issue 5. – P. 1897-1913.

6 Shweta B., Shambhu S., Shyam S.A. Study of Speech Recognition System

Based on Transformer and Connectionist Temporal Classification Models for Low

Resource Language // Procced. 24th internat. conf. «Speech and Computer» (Specom

2022). – Gurugram, 2022. – P. 56-63.

7 Jain A. Finnish language modeling and ASR with Deep Transformer Models

// https://www.researchgate.net/publication/340223686. 12.04.2023.

8 Orken M., Keylan A., Dina O. et al. Identifying the influence of transfer

learning method in developing an end-to- end automatic speech recognition system

with a low data level // Eastern-European Journal of Enterprise Technologies. – 2022.

– Vol. 1, Issue 9(115). – P. 84-92.

9 SONIX A short history of speech recognition // https://sonix.ai/history-of-speech-

recognition. 12.04.2023.

10 Fredrik N., Zelal Y. The implementation of Voice Command in smart

Homes: thes. … bachelor of science – Stockholm, 2018. – 36 p.

11 IBM Shoebox // https://www.ibm.com/ibm/history. 12.04.2023.

12 Lowerre B., Reddy R. The Harpy Speech Recognition System: performance

with large vocabularies // The Jounal of the Acoustical Society of America. – 1976. –

Vol. 60, Issue 1. – P. S10-S11.

13 Kouemou G. History and Theoretical Basics of Hidden Markov Models // In

book: Hidden Markov Models, Theory and Applications. – Ulm, 2011. – P. 1-26.

14 Mark G., Steve Y. The Application of Hidden Markov Models in Speech

Recognition. – Hanover, 2008. – 113 p.

15 Ambuj M., Navonil M., Rishabh B. et al. A Review of Deep Learning

Techniques for Speech Processing // https://arxiv.org/abs/2305.00359. 12.04.2023.

16 Hojjat S., Julianne B., Sharan S. et al. Recent Advances in Recurrent Neural

Networks // https://arxiv.org/abs/1801.01078. 13.04.2023.

87

17 Hinton G., Osindero S., Teh Y.-W. A Fast Learning Algorithm for Deep

Belief Nets // Neural computation. – 2006. – Vol. 18. – P. 1527-1554.

18 Bengio Y., Boulanger-Lewandowski N., Pascanu R. Advances in

optimizing recurrent networks // Procced. IEEE internat. conf. on Acoustics, Speech

and Signal Processing. – Vancouver, 2013. – P. 8624-8628.

19 Song W., Guanyu L. Overview of end-to-end speech recognition // Journal

of Physics: Conference Series. – 2019. – Vol. 1187, Issue 5. – P. 052068-1-052068-5.

20 Ruchao F., Wei C., Peng C. et al. A CTC Alignment-based Non-

autoregressive Transformer for End-to-end Automatic Speech Recognition // IEEE

Transactions on Audio, Speech, and Language Processing. – 2023. – Vol. 31. –

P. 1436-1448.

21 Dzmitry B., Kyunghyun C. et al. Neural Machine Translation by Jointly

Learning to Align and Translate // https://arxiv.org/abs/1409.0473. 13.04.2023.

22 Pengbin F., Daxing L., Huirong Y. LAS-Transformer: An Enhanced

Transformer Based on the Local Attention Mechanism for Speech Recognition //

Information. – 2022. – Vol. 13, Issue 5. – P. 250-1-250-13.

23 Sehoon K., Amir G. Squeezeformer: An Efficient Transformer for

Automatic Speech Recognition // https://arxiv.org/abs/2206.00888. 13.04.2023.

24 Anmol G., James Q., Chung-Cheng C. et al. Conformer: Convolution-

augmented Transformer for Speech Recognition // Procced. conf. «Interspeech

2020». – Shanghai, 2020. – P. 5036-5040.

25 Helmer S., Roeland V.H., Catia C. et al. Automatic Speech Recognition and

Pronunciation Error Detection of Dutch Non-native Speech: cumulating speech

resources in a pluricentric language // Speech Communication. – 2022. – Vol. 144. –

P. 1-9.

26 Bence M.H., Siyuan F., Rob V.S. et al. Low-resource automatic speech

recognition and error analyses of oral cancer speech // Speech Communication. –

2022. – Vol. 141. – P. 14-27.

27 Alicia B.W., Cady G., Isabel B. Uneven success: automatic speech

recognition and ethnicity-related dialects // Speech Communication. – 2022. –

Vol. 140. – P. 50-70.

28 Karol N., Michal P., Kyoko M. et al. Adapting Multilingual Speech

Representation Model for a New, Underresourced Language through Multilingual

Fine-tuning and Continued Pretraining // Information Processing & Management. –

2023. – Vol. 60, Issue 2. – P. 103148-1-103148-14.

29 Xu J., Pan J., Yan Y. Agglutinative Language Speech Recognition Using

Automatic Allophone Deriving // Chinese Journal of Electronics. – 2016. – Vol. 25,

Issue 2. – P. 328-333.

30 Muhammadjon M., Saida M., Ilyos K. et al. USC: An Open-Source Uzbek

Speech Corpus and Initial Speech Recognition Experiments //

https://arxiv.org/abs/2107.14419v1. 18.04.2023.

31 Alakbar V., Natavan A. et al. Development of Speech Recognition Systems

in Emergency Call Centers // Symmetry. – 2021. – Vol. 13. – P. 634-1-634-17.

88

32 Povey D., Ghoshal A., Gilles B. et al. The Kaldi Speech Recognition

Toolkit // Procced. conf. Workshop on Automatic Speech Recognition and

Understanding (IEEE 2011). – Waikoloa, 2011. – P. 1-4.

33 Samir R., Natavan A., Alakbar V. Automatic Speech Recognition in Taxi

Call Service Systems // Procced. internat. conf. Emerging Technologies in

Computing (ICETIC 2019). – London, 2019. – P. 243-253.

34 Huang X., Acero A., Hon H.-W. Spoken Language Processing: A Guide to

Theory, Algorithm, and System Development. – New Jersey: Prentice Hall., 2001. –

980 p.

35 Ren Z., Nurmemet Y., Wushour S. et al. Improving Hybrid CTC/Attention

Architecture for Agglutinative Language Speech Recognition // Sensors. – 2022. –

Vol. 22, Issue 19. – P. 7319-1-7319-17.

36 Common Voice // https://commonvoice.mozilla.org/en/datasets. 18.04.2023.

37 Mamyrbayev O., Oralbekova D., Alimhan K. et al. A study of transformer-

based end-to-end speech recognition system for Kazakh language // Scientific

Reports. – 2022. – Vol. 12, Issue 1. – P. 8337-1-8337-11.

38 Orken Z.M., Dina O., Keylan A. et al. Hybrid end-to-end model for Kazakh

speech recognition // International Journal of Speech Technology. – 2022. – Vol. 26.

– P. 261-270.

39 Guo T., Yolwas N., Slamu W. Efficient Conformer for Agglutinative

Language ASR Model Using Low-Rank Approximation and Balanced Softmax //

Applied Sciences. – 2023. – Vol. 13, Issue 7. – P. 4642-1-4642-16.

40 Amirgaliyev B., Kuanyshbay D., Baimuratov O. et al. Development of

Automatic Speech Recognition for Kazakh Language using Transfer Learning //

International Journal of Advanced Trends in Computer Science and Engineering. –

2020. – Vol. 9, Issue 4. – P. 5880-5886.

41 Nicholas P. Introduction to Altaic Linguistics. – Wiesbaden: Harrassowitz,

1965. – 212 p.

42 Lars J., Csató É.Á. The Turkic Languages. – London: Routledge, 2015. –

504 p.

43 Muhamedova R. Kazakh: A Comprehensive Grammar. – London:

Routledge, 2015. – 323 p.

44 Dotton Z., Wagner J.D. A Grammar of Kazakh // https://slaviccenters.duke.

edu/sites/slaviccenters.duke.edu/files/file-attachments/kazakh. 18.04.2023.

45 Aslı G., Celia K. Turkish: A Comprehensive Grammar. – London:

Routledge, 2005. – 580 р.

46 Rehm G., Uszkoreit. The Finnish Language in the Digital Age. – Berlin,

2012. – 81 p.

47 Durrell M. Hammer's German Grammar and Usage. – NY.: Routledge,

2016. – 632 p.

48 Jaehoon Y., Lucien B., Korean: A Comprehensive Grammar. – London:

Routledge, 2011. – 496 p.

89

49 Jurafsky D., Martin J. Speech and Language Processing: An Introduction to

Natural Language Processing, Computational Linguistics, and Speech Recognition. –

Ed. 3rd. – New Jersey, 2009. – 988 p.

50 Bird S., Klein E., Loper E. Natural Language Processing with Python:

Analyzing Text with the Natural Language Toolkit. – Sebastopol, 2009. – 504 p.

51 Loper E., Bird S. NLTK: the Natural Language Toolkit //

https://archive.org/details/arxiv-cs0205028. 29.09.2023.

52 Smith R. An Overview of the Tesseract OCR Engine // Procced. Ninth

internat. conf. on Document Analysis and Recognition (ICDAR 2007). – Curitiba,

2007. – P. 629-633.

53 LeCun Y., Bengio Y., Hinton G. Deep learning // Nature. – 2015. –

Vol. 521. – P. 436-444.

54 Yingying Z., Cong Y., Xiang B. Scene text detection and recognition:

recent advances and future trends // Frontiers of Computer Science. – 2015. –

Vol. 10. – P. 19-36.

55 Sutskever I., Oriol V., Quoc V.L. Sequence to sequence learning with

neural networks // https://arxiv.org/abs/1409.3215. 29.09.2023 y.

56 Ashish V., Noam S., Niki P. et al. Attention Is All You Need //

https://arxiv.org/abs/1706.03762. 29.09.2023.

57 Radford A., Wu J., Child R. et al. Language Models are Unsupervised

Multitask Learners // https://paperswithcode.com/paper/language. 29.09.2023.

58 Lewis M., Liu Y., Goyal N. et al. BART: Denoising Sequence-to-Sequence

Pre-training for Natural Language Generation, Translation, and Comprehension //

Proceed. conf. of the 58th Annual Meeting of the Association for Computational

Linguistics. – Stroudsburg, 2020. – P. 7871-7880.

59 Tomas M., Kai C., Greg S.C. and Jeffrey D. Efficient Estimation of Word

Representations in Vector Space // https://arxiv.org/abs/1301.3781. 29.09.2023y.

60 Огнев И В. and Парамонов П.А. Распознавание речи методами

скрытых марковских моделей в ассоциативной осцилляторной среде //

Технические науки. Информатика, вычислительная техника. – 2013. – №3(27). –

С. 115-126.

61 Bhatt S., Jain A., Dev A. Feature Extraction Techniques with Analysis of

Confusing Words for Speech Recognition in the Hindi Language // Wireless Personal

Communications. – 2021. – Vol. 118. – P. 3303-3333.

62 Yang C.-H. et al. Decentralizing Feature Extraction with Quantum

Convolutional Neural Network for Automatic Speech Recognition // Proocced.

(ICASSP 2021) IEEE internat. conf. on Acoustics, Speech and Signal Processing. –

Toronto, 2021. – P. 6523-6527.

63 Qin L., Yuze Y., Tianxiang L. et al. MSP-MFCC: Energy-Efficient MFCC

Feature Extraction Method With Mixed-Signal Processing Architecture for Wearable

Speech Recognition Applications // IEEE Access. – 2020. – Vol. 8. – P. 48720-48730.

64 Apeksha A., Akshat S., Ajay A. et al. Two-Way Feature Extraction for

Speech Emotion Recognition Using Deep Learning // Sensors. – 2022. – Vol. 22,

Issue 6. – P. 2378-1-2378-11.

90

65 Naderi N., Nasersharif B. Robust sub-band speech feature extraction using

multiresolution convolutional neural networks // Journal of Electrical Engineering. –

2019. – Vol. 49, Issue 3. – P. 89-1-89-13.

66 Panikos H., Yasser F.O.M., Akio Y. Deep Convolutional Neural Networks

for Feature Extraction in Speech Emotion Recognition // Human-Computer

Interaction. Recognition and Interaction Technologies: procced. conf. – Orlando,

2019. – P. 117-132.

67 Becchetti C., Ricotti L.P. Speech Recognition: Theory and C++

Implementation. – Hoboken, NJ, 1999. – 428 p.

68 Zhang Q., Lu H., Sak H. et al. Transformer transducer: A streamable speech

recognition model with transformer encoders and rnn-t loss //

https://arxiv.org/abs/2002.02562. 07.05.2023.

69 Watanabe S., Hori T., Kim S. Hybrid CTC/Attention Architecture for End-

to-End Speech Recognition // IEEE Journal of Selected Topics in Signal Processing.

– 2017. – Vol. 11, Issue 8. – P. 1240-1253.

70 Jonas A., Marc P., Noah R. et al. Introducing a Virtual Assistant to the Lab:

A Voice User Interface for the Intuitive Control of Laboratory Instruments // SLAS

Technology. – 2018. – Vol. 23, Issue 5. – P. 476-482.

71 Gupta M., Rajnish K., Bhattacharjee V. Impact of Parameter Tuning for

Optimizing Deep Neural Network Models for Predicting Software Faults // Scientific

Programming. – 2021. – Vol. 2021, Issue 3. – P. 1-17.

72 Hughes J. The Problem with Word Error Rate (WER) //

https://www.speechmatics.com/company/articles-and-news/the-problem. 07.05.2023.

73 Leug K. Evaluate OCR Output Quality with Character Error Rate (CER)

and Word Error Rate (WER) // https://towardsdatascience.com. 07.05.2023.

74 Wang S., Schuurmans D., Peng F. et al. Combining Statistical Language

Models via the Latent Maximum Entropy Principle // Machine Learning. – 2005. –

Vol. 60. – P. 229-250.

75 Rabiner L. and Juang B. Speech Recognition // In book: Springer Handbook

of Speech Processing. – Heidelberg: Springer Berlin, 2008. – P. 873-902.

76 Ронжин А., Карпов А., Ли И. Речевой и многомодальный интерфейсы.

– М., 2006. – 170 с.

77 Jelinek F. Continuous speech recognition by statistical methods // In

Proceedings of the IEEE. – 1976. – Vol. 64, Issue 4. – Р. 532-556.

78 Hinton G., Deng L., Yu D. et al. Deep Neural Networks for Acoustic

Modeling in Speech Recognition: The Shared Views of Four Research Groups //

IEEE Signal Processing Magazine. – 2012. – Vol. 29, Issue 6. – P. 82-97.

79 Yu D., Deng L. Automatic Speech Recognition: A Deep Learning

Approach. – London: Springer-Verlag, 2015. – 321 p.

80 Deng L. Deep learning: from speech recognition to language and

multimodal processing // APSIPA Transactions on Signal and Information

Processing. – 2016. – Vol. 5. – P. 1-15.

91

81 Grezl F., Karafiat M., Kontar S. et al. Probabilistic and Bottle-Neck

Features for LVCSR of Meetings // Proceed. conf. Acoustics, Speech and Signal

Processing (ICASSP). – NY., 2007. – P. IV-757-IV-760.

82 Andrew L.M., Peng Q., Ziang X. et al. Building DNN acoustic models for

large vocabulary speech recognition // Computer Speech & Language. – 2017. –

Vol. 41. – P. 195-213.

83 Miao Y. Kaldi+ PDNN: building DNN-based ASR systems with Kaldi and

PDNN // https://arxiv.org/abs/1401.6984. 29.09.2023.

84 Sainath T.N., Mohamed A.-r., Kingsbury B. et al. Deep convolutional

neural networks for LVCSR // Proceed. of IEEE internat. conf. on Acoustics, Speech

and Signal Processing (ICASSP). – Vancouver, 2013. – P. 8614-8618.

85 Delcroix M., Kinoshita K., Ogawa A. et al. Context Adaptive Neural

Network Based Acoustic Models for Rapid Adaptation // IEEE/ACM Transactions on

Audio, Speech, and Language Processing. – 2018. – Vol. 26, Issue 5. – P. 895-908.

86 Гапочкин А.В. Нейронные сети в системах распознавания речи //

Science Time. – 2014. – №1. – С. 29-36.

87 Кипяткова И.С., Карпов А.А. Разновидности глубоких искусственных

нейронных сетей для систем распознавания речи // Тр. СПИИРАН. – 2016. –

Вып. 49. – С. 80-103.

88 Waibel A., Toshiyuki H., Hinton G., Shikano K. and Lang J.K. Phoneme

recognition using time-delay neural networks // IEEE Transactions on Acoustics,

Speech and Signal Processing. – 1989. – Vol. 37, Issue 3. – P. 328-339.

89 Peddinti V., Povey D., Khudanpur S. A time delay neural network

architecture for efficient modeling of long temporal contexts // Procced. conf.

«Interspeech 2015». – Dresden, 2015. – P. 3212-3218.

90 Тампель И. Автоматическое распознавание речи – основные этапы за

50 лет // Научно-технический вестник информационных технологий, механики

и оптики. – 2015. – Т. 15, №6. – С. 957-968.

91 Geiger J.T., Zhang Z., Weninger F. et al. Robust speech recognition using

long short-term memory recurrent neural networks for hybrid acoustic modelling //

Procced. conf. «Interspeech 2014». – Singapore, 2014. – P. 631-635.

92 Zhang Y., Pezeshki M., Brakel P. et al. Towards End-to-End Speech

Recognition with Deep Convolutional Neural Networks //

https://arxiv.org/abs/1701.02720. 29.09.2023.

93 Graves A. et al. Connectionist temporal classification: labelling

unsegmented sequence data with recurrent neural networks // Appearing in

Proceedings of the 23 rd International Conference on Machine Learning. –

Pittsburgh, 2016. – P. 1-9.

94 Graves A., Jaitly N. Towards End-To-End Speech Recognition with

Recurrent Neural Networks // Proceed. of the 31st internat. conf. on Machine

Learning (PMLR). – Beijing, 2014. – P. 1764-1772.

95 Adnan A., Javeria N., Meer H. Voice Reminder Assistant based on Speech

Recognition and Speaker Identification using Kaldi // Pakistan Journal of Scientific

Research. – 2017. – Vol. 1, Issue 2. – P. 13-18.

92

96 Hori T., Watanabe S., Hershey J.R. Multi-level language modeling and

decoding for open vocabulary end-to-end speech recognition // Procced. 2017 IEEE

Automatic Speech Recognition and Understanding Workshop (ASRU). – Okinawa,

2017. – P. 287-293.

97 Rabiner L. A tutorial on hidden Markov models and selected applications in

speech recognition // Proceed. of the IEEE. – 1989. – Vol. 77, Issue 2. – P. 257-286.

98 Bishop C.M. Pattern Recognition and Machine Learning. – NY., 2006. –

738 p.

99 Baum L.E., Petrie T.S.G., Weiss N. A Maximization Technique Occurring

in the Statistical Analysis of Probabilistic Functions of Markov Chains // The Annals

of Mathematical Statistics. – 1970. – Vol. 41, Issue 1. – P. 164-171.

100 Технологии распознавания речи. Системы искусственного

интеллекта, распознающие речь, прошли большой путь развития от появления в

1970-х годах до наших дней // https://ai-news.ru/2018/02/tehnologii

_raspoznavaniya_rechi_sistemy_iskusstvennogo_intellekta_raspoznau. 29.09.2023.

101 Марковников Н.М., Кипяткова И.С. Аналитический обзор

интегральных систем распознавания речи // Тр. СПИИРАН. – 2018. – Вып. 58. –

С. 77-110.

102 Mikolov T., Karafiat M., Burget L. et al. Recurrent neural network based

language model // Procced. conf. Interspeech 2010. – Chiba, 2010. – P. 1045-1048.

103 Rao K., Peng F., Sak H. et al. Grapheme-to-phoneme conversion using

Long Short-Term Memory recurrent neural networks // Procced. 2015 IEEE internat.

conf. on Acoustics, Speech and Signal Processing (ICASSP). – South Brisbane, 2015.

– P. 4225-4229.

104 Маковкин К.A. Гибридные модели – Скрытые марковские

модели/Многослойный персептрон и их применение в системах распознавания

речи. Обзор // Речевые технологии. – 2012. – №3. – С. 58-83.

105 Jaitly N., Hinton G. Learning a better representation of speech soundwaves

using restricted boltzmann machines // Procced. 2011 IEEE internat. conf. on

Acoustics, Speech and Signal Processing (ICASSP). – Prague, 2011. – P. 5884-5887.

106 Rumelhart D.E., McClelland J.L. Information Processing in Dynamical

Systems: Foundations of Harmony Theory // Procced. Parallel Distributed

Processing: Explorations in the Microstructure of Cognition: Foundations. –

Cambridge: MIT Press, 1987. – P. 194-281.

107 Haykin S. Neural Networks: A Comprehensive Foundation. – New Jersey:

Prentice Hall, 1998. – 842 p.

108 Shrott R.Sequence Models by Andrew Ng – 11 Lessons Learned //

https://towardsdatascience.com/sequence-models-by-andrew-ng-11. 15.05.2023.

109 Vanilla Recurrent Neural Network // https://calvinfeng.gitbook.io

/machine-learning-notebook/supervised-learning/recurrent-neural.18.05.2023y.

110 RNN, LSTM, GRU и другие рекуррентные нейронные сети //

http://vbystricky.ru/2021/05/rnn_lstm_gru_etc.html. 18.05.2023.

111 Lipton Z.C. and Berkowitz J. A Critical Review of Recurrent Neural

Networks for Sequence Learning // https://arxiv.org/abs/1506.00019. 20.05.2023.

93

112 Williams R.J., Zipser D. Gradient-Based Learning Algorithms for

Recurrent Networks and Their Computational Complexity // In book:

Backpropagation: theory, architectures, and applications. – London: Psychology

Press, 1995. – P. 433-486.

113 Saxena S. Introduction to Gated Recurrent Unit (GRU) //

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-gated. 20.05.2023.

114 Sayre K.M. Machine recognition of handwritten words: A project report //

Pattern Recognition. – 1973. – Vol. 5, Issue 3. – P. 213-228.

115 Bridle J.S. Probabilistic Interpretation of Feedforward Classification

Network Outputs, with Relationships to Statistical Pattern Recognition // In book:

Neurocomputing. – Heidelberg: Springer-Verlag Berlin, 1990. – P. 227-236.

116 Cho K., Merriënboer B.V., Gulcehre C. et al. Learning Phrase

Representations using RNN Encoder–Decoder for Statistical Machine Translation //

Proceed. of the 2014 conf. on Empirical Methods in Natural Language Processing

(EMNLP). – Doha, Qatar, 2014. – P. 1724-1734.

117 Chorowski J.K., Bahdanau D., Serdyuk D. et al. Attention-Based Models

for Speech Recognition // Advances in Neural Information Processing Systems. –

2015. – Vol. 9. – P. 577-585.

118 Mnih V., Heess N., Graves A. and Kavukcuoglu K. Recurrent Models of

Visual Attention // Proceed. of the 27th internat. conf. on Neural Information

Processing Systems. – Montreal, 2014. – P. 2204-2212.

119 Трансформеры как графовые нейронные сети //

https://habr.com/ru/articles/491576/.10.06.2023.

120 Yifan P., Siddharth D., Ian L. and Shinji W. Branchformer: Parallel MLP-

Attention Architectures to Capture Local and Global Context for Speech Recognition

and Understanding // Procced. internat. conf. on Machine Learning. – Baltimore,

2022. – P. 17627-17643.

121 Liu H., Dai Z., So D.R. et al. Pay Attention to MLPs //

https://deepai.org/publication/pay-attention-to-mlps. 10.06.2023.

122 Mussakhojayeva S., Khassanov Y., Varol H.A. KSC2: An Industrial-Scale

Open-Source Kazakh Speech Corpus // Procced. Interspeech 2022. – Incheon, 2022.

– P. 1367-1371.

123 Akbayan B., Orken M. Еnd-to-end speech recognition systems for

agglutinative languages // Scientific Journal of Astana IT University. – 2023. –

Vol. 13, Issue 13. – P. 86-92.

124 Du W., Maimaitiyiming Y., Nijat M. et al. Automatic Speech Recognition

for Uyghur, Kazakh, and Kyrgyz: An Overview // Applied Sciences. – 2023. –

Vol. 13, Issue 1. – P. 326-1-326-25.

125 Cho J., Baskar M.K., Li R. et al. Multilingual Sequence-to-Sequence

Speech Recognition: Architecture, Transfer Learning, and Language Modeling //

Procced. 2018 IEEE Spoken Language Technology Workshop (SLT). – Athens,

2018. – P. 521-527.

94

126 Ardila R., Branson M., Kelly D. et al. Common Voice: A Massively-

Multilingual Speech Corpus // Procced. 12 th internat. conf. on Language Resources

and Evaluation. – Marseille, 2020. – P. 4218-4222.

127 Heigold G., Vanhoucke V., Senior A. et al. Multilingual acoustic models

using distributed deep neural networks // Procced. 2013 IEEE internat. conf. on

Acoustics, Speech and Signal Processing. – NY., 2013. – P. 8619-8623.

128 Çarki K., Geutner P. and Schultz T. Turkish LVCSR: towards better

speech recognition for agglutinative languages // Procced. 2000 IEEE internat. conf.

on Acoustics, Speech, and Signal Processing. – Istanbul, 2000. – P. 1563-1566.

129 Żelasko P., Feng S., Velázquez L.M. et al. Discovering phonetic

inventories with crosslingual automatic speech recognition // Computer Speech &

Language. – 2022. – Vol. 74. – P. 101358-1-101358-58.

130 Tachbelie M.Y., Abate S.T., Schultz T. Multilingual speech recognition

for GlobalPhone languages // Speech Communication. – 2022. – Vol. 140. – P. 71-86.

131 Chowdhury S.A., Hussein A., Abdelali A. et al. Towards One Model to

Rule All: Multilingual Strategy for Dialectal Code-Switching Arabic ASR // Procced.

of the 22nd Annual conf. of the internat. Speech Communication Association. –

Brno, 2021. – P. 1-5.

132 Ankit K., Aggarwal R.K. An Investigation of Multilingual TDNN-BLSTM

Acoustic Modeling for Hindi Speech Recognition // International Journal of Sensors

Wireless Communications and Control. – 2022. – Vol. 12. – P. 19-31.

133 Mussakhojayeva S., Khassanov Y., Atakan V. A Study of Multilingual

End-to-End Speech Recognition for Kazakh, Russian, and English // Lecture Notes in

Computer Science. – 2021. – Vol. 12997 LNAI. – P. 448-459.

134 Watanabe S., Hori T., Karita S. et al. ESPnet: End-to-End Speech

Processing Toolkit // Procced. «Interspeech, 2018». – Hyderabad, 2018. – P. 1-6.

135 Watanabe S., Boyer F., Chang X. et al. The 2020 ESPnet Update: New

Features, Broadened Applications, Performance Improvements, and Future Plans //

Procced. 2021 IEEE Data Science and Learning Workshop (DSLW). – Toronto,

2021. – P. 1-6.

136 Guo P., Boyer F., Chang X. et al. Recent Developments on Espnet Toolkit

Boosted By Conformer // Procced. IEEE internat. conf. on Acoustics, Speech and

Signal Processing (ICASSP). – Toronto, 2021. – P. 5874-5878.

137 Qin C.-X., Qu D., Zhang L.-H. Towards end-to-end speech recognition

with transfer learning // EURASIP Journal on Audio, Speech, and Music Processing.

– 2018. – Vol. 2018. – P. 18-1-18-9.

138 Kimanuka U., Buyuk O. Turkish Speech Recognition Based On Deep

Neural Networks // Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. –

2018. – Cil. 22. – S. 319-329.

139 Xiao Z., Ou Z., Chu W. et al. Hybrid CTC-Attention based End-to-End

Speech Recognition using Subword Units // Procced. 11th internat. sympos. on

Chinese Spoken Language Processing (ISCSLP). – Taipei, 2018. – P. 146-150.

95

140 Karita S., Kubo Y., Bacchiani M. et al. A Comparative Study on Neural

Architectures and Training Methods for Japanese Speech Recognition // Procced.

Interspeech - 2021. – Brno, 2021. – P. 2092-2096.

141 Hannun A., Case C., Casper J. et al. Deep Speech: Scaling up end-to-end

speech recognition // https://arxiv.org/abs/1412.5567. 30.06.2023.

142 Yang H., Nam H. Hyperparameter experiments on end-to-end automatic

speech recognition // Phonetics Speech Sci. – 2021. – Vol. 13. – P. 45-51.

143 Chuang S.-P., Liu A.H. et al. Improving Automatic Speech Recognition

and Speech Translation via Word Embedding Prediction // IEEE/ACM Transactions

on Audio, Speech, and Language Processing. – 2020. – Vol. 29. – P. 93-105.

144 Kubo Y., Karita S., Bacchiani M. Knowledge Transfer from Large-scale

Pretrained Language Models to End-to-end Speech Recognizers // Procced. IEEE

internat. conf. on Acoustics, Speech and Signal Processing (ICASSP). – Singapore,

2022. – P. 8512-8516.

145 Ronny H.W., Peyser C., Sainath T.N. et al. Sentence-select: large-scale

language model data selection for rare-word speech recognition // Procced.

Interspeech, 2022. – Incheon, 2022. – P. 689-693.

146 Mukherji K., Pandharipande M., Kopparapu S.K. Improved Language

Models for ASR using Written Language Text // Procced. 2022 National conf. on

Communications (NCC). – Mumbai, 2022. – P. 362-366.

147 Mussakhojayeva S., Dauletbek K., Yeshpanov R. et al. Multilingual

Speech Recognition for Turkic Languages // Information. – 2023. – Vol. 14, Issue 2.

– P. 74-1-74-18.

148 Amirgaliyev Y., Kuanyshbay D., Yedilkhan D. et al. Automatic speech

recognition system for kazakh language using connectionist temporal classifier //

Journal of Theoretical and Applied Information Technology. – 2020. – Vol. 98,

Issue 4. – P. 703-713.

149 Kun J., Jungang X. A Survey on Neural Network Language Models //

https://www.researchgate.net/publication/333678905_A_Survey_on. 10.07.2023.

150 Bengio Y., Senecal J.-S. Quick Training of Probabilistic Neural Nets by

Importance Sampling // Proceed. of the Ninth International Workshop on Artificial

Intelligence and Statistics. – Florida, 2003. – P. 1-8.

151 Rao K., Peng F., Sak H. et al. Grapheme-to-phoneme conversion using

Long Short-Term Memory recurrent neural networks} // Procced. IEEE internat.

conf. on Acoustics, Speech and Signal Processing (ICASSP). – South Brisbane, 2015.

P. 4225-4229.

152 Alsayadi H.A., Abdelhamid A.A., Hegazy I. et al. Arabic speech

recognition using end-to-end deep learning // IET Signal Processing. – 2021. –

Vol. 15, Issue 8. – P. 521-534.

153 Mamyrbayev O., Alimhan K., Zhumazhanov B. et al. End-to-End Speech

Recognition in Agglutinative Languages // Procced. conf. Intelligent Information and

Database Systems. – Yogyakarta, 2019. – P. 391-401.

96

154 Asefisaray B., Haznedaroğlu A., Erden M. et al. Transfer learning for

automatic speech recognition systems // Procced. 26th Signal Processing and

Communications Applications conf. (SIU). – Izmir, 2018. – P. 1-4.

155 Zou W., Jiang D., Zhao S. et al. Comparable Study Of Modeling Units For

End-To-End Mandarin Speech Recognition // Procced. 11th internat. sympos. on

Chinese Spoken Language Processing (ISCSLP). – Taipei, 2018. – P. 369-373.

156 Markovnikov N., Kipyatkova I. Investigating Joint CTC-Attention Models

for End-to-End Russian Speech Recognition // Procced. conf. Speech and Computer.

– SPb., 2019. – P. 337-347.

157 Zeng Z., Pham V.T., Xu H. et al. Leveraging Text Data Using Hybrid

Transformer-LSTM Based End-to-End ASR in Transfer Learning // Procced. 12th

internat. sympos. on Chinese Spoken Language Processing (ISCSLP). – Hong Kong,

2021. – P. 1-5.

158 Thilo von N., Christoph B., Kinoshita K. et al. On Word Error Rate

Definitions and their Efficient Computation for Multi-Speaker Speech Recognition

Systems // https://api.semanticscholar.org/CorpusID. 29.09.2023.

159 Mamyrbayev O., Turdalyuly M., Mekebayev N. et al. Automatic

Recognition of Kazakh Speech Using Deep Neural Networks // Procced. conf.

Intelligent Information and Database Systems. – Yogyakarta, 2019. – P. 465-474.

160 Oord A.V.D., Dieleman S., Zen H. et al. WaveNet: A Generative Model

for Raw Audio // https://arxiv.org/abs/1609.03499. 15.07.2023.

161 Zeghidour N., Usunier N., Kokkinos I. et al. Learning Filterbanks from

Raw Speech for Phone Recognition // Procced. IEEE internat. conf. on Acoustics,

Speech and Signal Processing (ICASSP). – Calgary, 2018. – P. 5509-5513.

162 Schuller B., Weninger F., Wöllmer M. et al. Non-negative matrix

factorization as noise-robust feature extractor for speech recognition // Procced. IEEE

internat. conf. on Acoustics, Speech and Signal Processing. – Dallas, 2010. –

P. 4562-4565.

163 Kermanshahi M.A., Akbari A., Nasersharif B. Transfer Learning for End-

to-End ASR to Deal with Low-Resource Problem in Persian Language // Procced.

26th internat. Computer conf., Computer Society of Iran (CSICC). – Tehran, 2021. –

P. 1-5.

97

APPENDIX A

Certificates to a speaker of the seminars “Improved Speech Recognition for

Agglutinative languages”

https://satbayev.university/en/news/the-acesyri-summer-school-began-with-the-

itm-2023-conference

98

99

APPENDIX B

Author’s certificates of government registration for intellectual object

100

101

APPENDIX C

Script code for collecting the data of different Unicodes to one file

#The current program is for the preparation of data to machine learning task, exactly

for automatic sppech recognition.

#This program writes the contents of text files to one file.

import codecs

import re

import sys

import os

import sys

def find_txt_files(directory):

 names = []

 for subdir, dirs, files in os.walk(directory):

 for file in files:

 full = os.path.join(subdir, file)

 index = file.find(".txt")

 if index != -1:

 names.append(file[0: index])

 return names

def find_title(titles, title):

 for index, item in enumerate(titles):

 if item == title:

 return index

 return -1

def _detect_encoding(s):

 if s.startswith(codecs.BOM_UTF16_BE):

 return 'utf-16-be'

 if s.startswith(codecs.BOM_UTF16_LE):

 return 'utf-16-le'

 if s.startswith(codecs.BOM_UTF32_BE):

 return 'utf-32-be'

 if s.startswith(codecs.BOM_UTF32_LE):

 return 'utf-32-le'

 if s.startswith(codecs.BOM_UTF8):

102

 return 'utf-8'

 m = re.match(br'\s*<\?xml\b.*\bencoding="([^"]+)"', s)

 if m:

 return m.group(1).decode()

 m = re.match(br"\s*<\?xml\b.*\bencoding='([^']+)'", s)

 if m:

 return m.group(1).decode()

 return 'utf-8'

def func(value):

 return ' '.join(value.split())

def remove_in_brackets(mystring):

 result = mystring

 while (True):

 print(result)

 start = result.find("(!")

 if start ==-1:

 start = result.find("(!")

 end = result.find(").")

 if start == -1 or start>end:

 return result

 if start != -1 and end != -1:

 result = result[0: start] + result[end+1:]

 result = func(result)

 return result

#This function throws the files of different codings, except UTF-8

def main_func():

 print(sys.argv[1])

 print(sys.argv[2])

 print(sys.argv[3])

 source_dir = sys.argv[1]

 target_dir = sys.argv[2]

 broken_dir = sys.argv[3]

103

 txt_files = find_txt_files(source_dir)

 validated_file = open(os.path.join(target_dir, "validated.tsv"), "w")

validated_file.write("client_id\tpath\tsentence\tup_votes\tdown_votes\tage\tgender\ta

ccents\tlocale\tsegment\n")

 main_title = ""

 sentence = ""

 for subdir, dirs, files in os.walk(source_dir):

 for file in files:

 full = os.path.join(subdir, file)

 if file.find(".wav") != -1:

 main_title = file[0: file.find(".wav")]

 txt_file_path = os.path.join(subdir, main_title + ".txt")

 if os.path.exists(txt_file_path):

 with open(str(txt_file_path), 'br') as reader:

 bytes = reader.read()

 try:

 sentence = str(bytes, 'UTF-8')

 if sentence == "":

 os.system("rm " + full)

 os.system("rm " + os.path.join(subdir, main_title + ".txt"))

 print(full)

 else:

 after_bytes = sentence.encode('UTF-8')

 print("After_bytes: ", after_bytes)

 if after_bytes.startswith(b'\xef\xbb\xbf'):

 after_bytes = after_bytes[3:]

 print(after_bytes)

 sentence = after_bytes.decode('UTF-8')

 sentence = func(sentence)

 os.system("cp " + full + " " + target_dir)

 spker = main_title

 if main_title.find("spk_") != -1:

 title_part = main_title[len("spk_"):]

 print(title_part)

 spker = title_part[0: title_part.find("_T")]

 print(spker)

104

 print(main_title, "Senten: "+sentence)

 validated_file.write(str(spker) + "\t" + str(

 main_title + ".wav") + "\t" + sentence + "\t\t\t\t\t\t" + "kk" +

"\n")

 except:

 txt_file_path = str(subdir + "/" + main_title + ".txt")

 os.system("cp " + full + " " + broken_dir)

 os.system("cp " + txt_file_path + " " + broken_dir)

#This function processes the files from exception block

def collect_from_broken():

 print(sys.argv[2])

 print(sys.argv[3])

 print(sys.argv[4])

 target_dir = sys.argv[2]

 broken_dir = sys.argv[3]

 after_broken_dir = sys.argv[4]

 validated_file = open(os.path.join(target_dir, "validated.tsv"), "a")

 main_title = ""

 sentence = ""

 for subdir, dirs, files in os.walk(broken_dir):

 for file in files:

 full = os.path.join(subdir, file)

 if file.find(".wav") != -1:

 main_title = file[0: file.find(".wav")]

 txt_file_path = os.path.join(subdir, main_title + ".txt")

 if os.path.exists(txt_file_path):

 with open(str(txt_file_path), 'br') as reader:

 bytes = reader.read()

 try:

 if bytes.startswith(b'\xef\xbb'):

 bytes = bytes.replace(b'\xef\xbb', b'')

 print(bytes)

 sentence = str(bytes, 'UTF-8')

 elif bytes.startswith(b'\xff\xfe'):

 bytes = bytes.replace(b'\xff\xfe', b'')

 print(bytes)

105

 sentence = str(bytes, 'UTF-16')

 else:

 sentence = str(bytes, 'rk1048')

 if sentence == "":

 os.system("rm " + full)

 os.system("rm " + os.path.join(subdir, main_title + ".txt"))

 print(full)

 else:

 sentence = func(sentence)

 os.system("cp " + full + " " + target_dir)

 spker = main_title

 if main_title.find("spk_") != -1:

 title_part = main_title[len("spk_"):]

 print(title_part)

 spker = title_part[0: title_part.find("_T")]

 print(spker)

 print(main_title, "\nSenten: "+sentence)

 validated_file.write(str(spker) + "\t" + str(

 main_title + ".wav") + "\t" + sentence + "\t\t\t\t\t\t" + "kk" +

"\n")

 except:

 txt_file_path = str(subdir + "/" + main_title + ".txt")

 os.system("cp " + full + " " + after_broken_dir)

 os.system("cp " + txt_file_path + " " + after_broken_dir)

main_func()

collect_from_broken()

106

APPENDIX D

Source code for Telebot

import subprocess as s

import os

import string

import soundfile

from espnet_model_zoo.downloader import ModelDownloader

from espnet2.bin.asr_inference import Speech2Text

BEST MODEL:

tag = "Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_

raw_bpe_sp_valid.acc.best"

SECOND BEST MODEL:

#tag = 'Shinji Watanabe/spgispeech_asr_train_asr_conformer6_n_

fft512_hop_length256_raw_en_unnorm_bpe5000_valid.acc.ave'

EXTREMELY POOR MODEL:

#tag = "kamo-naoyuki/wsj"

config = "exp/asr_train_asr_conformer5_raw_kk_char_sp/config.yaml"

model = "exp/asr_train_asr_conformer5_raw_kk_char_sp/valid.acc.ave_10best.pth"

speech2text = Speech2Text(config, model)

#d = ModelDownloader()

speech2text = Speech2Text(

"model/valid.acc.best.pth",

device="cpu", #cuda if gpu

minlenratio=0.0,

maxlenratio=0.0,

ctc_weight=0.3,

beam_size=10,

batch_size=0

)

#Strips text of punctuation and makes it uppercase

def text_normalizer(text):

 text = text.upper()

 return text.translate(str.maketrans('', '', string.punctuation))

Generates and returns transcript given audio file path

def get_transcript(path):

 speech, rate = soundfile.read(path)

107

 nbests = speech2text(speech)

 text, *_ = nbests[0]

 return text, rate

Set necessary paths

path = os.path.join(os.getcwd(), 'egs')

files = os.listdir(path+'/audio')

For every file in audio directory

for file in files:

 # Get transcript, converting to .wav if not a wav

 if not file.endswith('.wav'):

 os.chdir(path+'/audio')

 s.run(f"ffmpeg -i {file} {file.split('.')[0]}.wav", shell=True, check=True,

universal_newlines=False)

 os.chdir('../..')

 file = file.split('.')[0]+'.wav'

 text, est_rate = get_transcript(f'{path}/audio/{file}')

 os.remove(f'{path}/audio/{file}')

 else:

 text, est_rate = get_transcript(f'{path}/audio/{file}')

 # Fetch true transcript

 #print(sentence)

 label_file = open(file.split('.')[0]+'.txt', "w")

 label = file.split('.')[0]+'.txt'

 #writes result of regicnition to the file

 label_file.write(text)

 # with open(f'{path}/text/{label}', 'r') as f:

 # true_text = f.readline()

 # Print true transcript and hypothesis

 #print(f"\n\nReference text: {true_text}")

 #print(f"ASR hypothesis: {text_normalizer(text)}\n\n")

